
Computers and Mathematics with Applications 55 (2008) 1720–1734
www.elsevier.com/locate/camwa

Effective partitioning method for computing weighted
Moore–Penrose inverse

Marko D. Petković∗, Predrag S. Stanimirović, Milan B. Tasić

University of Niš, Department of Mathematics, Faculty of Science, Višegradska 33, 18000 Niš, Serbia

Received 16 February 2007; received in revised form 10 July 2007; accepted 17 July 2007

Abstract

We introduce a method and an algorithm for computing the weighted Moore–Penrose inverse of multiple-variable polynomial
matrix and the related algorithm which is appropriated for sparse polynomial matrices. These methods and algorithms are
generalizations of algorithms developed in [M.B. Tasić, P.S. Stanimirović, M.D. Petković, Symbolic computation of weighted
Moore–Penrose inverse using partitioning method, Appl. Math. Comput. 189 (2007) 615–640] to multiple-variable rational and
polynomial matrices and improvements of these algorithms on sparse matrices. Also, these methods are generalizations of the
partitioning method for computing the Moore–Penrose inverse of rational and polynomial matrices introduced in [P.S. Stanimirović,
M.B. Tasić, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004) 137–163; M.D. Petković,
P.S. Stanimirović, Symbolic computation of the Moore–Penrose inverse using partitioning method, Internat. J. Comput. Math. 82
(2005) 355–367] to the case of weighted Moore–Penrose inverse. Algorithms are implemented in the symbolic computational
package MATHEMATICA.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Weighted Moore–Penrose inverse; Rational matrices; Polynomial matrices; Sparse matrices; Symbolic computation

1. Introduction

Let Cm×n be the set of m × n complex matrices, and Cm×n
r be the set of m × n complex matrices of rank r :

Cm×n
r = {X ∈ Cm×n

| rank(X) = r}. For any matrix A ∈ Cm×n and positive definite Hermitian matrices M and N of
the orders m and n respectively, consider the following equations in X , where ∗ denotes the conjugate and transpose:

(1) AX A = A (2) X AX = X

(3) (M AX)∗ = M AX (4) (N X A)∗ = N X A.

The matrix X satisfying these equations is called the weighted Moore–Penrose inverse of A [4], and it is denoted by
X = AĎ

M N . In the partial case M = Im , N = In , the matrix X = AĎ
M N comes to the Moore–Penrose inverse AĎ of

A [4].

∗ Corresponding author.
E-mail addresses: dexter of nis@neobee.net (M.D. Petković), pecko@pmf.ni.ac.yu (P.S. Stanimirović), milan12t@ptt.yu (M.B. Tasić).

0898-1221/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2007.07.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81207264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:dexter_of_nis@neobee.net
mailto:pecko@pmf.ni.ac.yu
mailto:milan12t@ptt.yu
http://dx.doi.org/10.1016/j.camwa.2007.07.014

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1721

As usual, C[s1, . . . , sp] (resp. C(s1, . . . , sp)) denotes the polynomials (resp. rational functions) with complex
coefficients in the variables s1, . . . , sp. The matrices of format m × n with elements in C[s1, . . . , sp] (resp.
C(s1, . . . , sp)) are denoted by C[s1, . . . , sp]

m×n (resp C(s1, . . . , sp)
m×n). An appropriate identity matrix is denoted

by I .
The computation of the Moore–Penrose inverse of one-variable polynomial and/or rational matrices, based on

the Leverrier–Faddeev algorithm, is investigated in [5–10]. The implementation of this algorithm in the symbolic
computational language MAPLE, is described in [11]. An algorithm for computing the Moore–Penrose inverse of
two-variable rational and polynomial matrix is introduced in [12]. A quicker and less memory-expensive effective
algorithm for computing the Moore–Penrose inverse of one-variable and two-variable polynomial matrix, with respect
to those introduced in [8] and [12], is presented in [13]. This algorithm is efficient when elements of the input matrix
are polynomials with only few nonzero addends.

Papers [9,14–17] deal with a computation of the Drazin inverse. A generalization of these algorithms, introduced
in [18], generates the wide class of outer inverses of a rational or polynomial matrix.

An interpolation algorithm for computing the Moore–Penrose inverse of a given one-variable polynomial matrix,
based on the Leverrier–Faddeev method, is presented in [19]. Algorithms for computing the Moore–Penrose and
the Drazin inverse of one-variable polynomial matrices based on the evaluation–interpolation technique and the
Fast Fourier transform are introduced in [20]. Corresponding algorithms for two-variable polynomial matrices are
introduced in [21].

In this paper we consider the set of rational and polynomial matrices and various variants of the partitioning method
for computing generalized inverses. Greville’s partitioning method for numerical computation of generalized inverses
is introduced in [22]. Two different proofs for Greville’s method were presented in [23,24]. A simple derivation
of the Greville’s result has been given by Udwadia and Kalaba [25]. In [26] Fan and Kalaba used the approach
of determination of the Moore–Penrose inverse of matrices using dynamic programming and Belman’s principle of
optimality. Wang in [27] generalizes Greville’s method to the weighted Moore–Penrose inverse.

Many numerical algorithms for computing the Moore–Penrose inverse lack numerical stability. The Greville’s
algorithm requires more operations and consequently it accumulates more rounding errors (see for example [28]).
Moreover, it is well-known that the Moore–Penrose inverse is not necessarily a continuous function of the elements
of the matrix. The existence of this discontinuity presents further problems in the pseudoinverse computation. It is
therefore clear that cumulative round-off errors should be totally eliminated, which is possible only by means of the
symbolic implementation. In the symbolic implementation variables are stored in the “exact” form or can be left
“unassigned” (without numerical values), resulting in no loss of accuracy during the calculation [8].

An algorithm for computing the Moore–Penrose inverse of one-variable polynomial and/or rational matrices, based
on the Greville’s partitioning algorithm, is introduced in [2]. An extension of results from [2] to the set of two-variable
rational and polynomial matrices is introduced in the paper [3]. In our recent paper [1] we propose an algorithm for
computing the weighted Moore–Penrose of one-variable rational and polynomial matrix. In this work we generalized
the results from [1] in the following two ways:

– extend algorithms from [1] to the set of multi-variable rational and polynomial matrices with complex coefficients,
– make algorithms from [1] more effective on sparse matrices with a relatively small number of nonzero elements.

The structure of the paper is as follows. In the second section we extend the algorithm for computing the weighted
Moore–Penrose from [27] to the set of multiple-variable rational matrices with complex coefficients. The main results
are given in the third and the fourth sections. In Section 3 we adapt the previous algorithm to the set of polynomial
matrices. In the fourth section we consider two effective structures which exploit only nonzero addends in polynomial
matrices and improve previous results on the set of sparse matrices. In the last section we presented an illustrative
example and compared various algorithms.

2. Weighted Moore–Penrose inverse for multi-variable rational matrices

Let A(s1, . . . , sp) be a complex rational matrix. For the sake of simplicity, we will introduce new variables
s2p+1−i = si . Also we will denote the vector of all variables s1, . . . , s2p by S = (s1, . . . , s2p) and further we will
denote A(s1, . . . , sp) as A(S).

By Ai (S) we denote the submatrix of A(S) consisting of its first i columns, and by ai (S) is denoted the i th column
of A(S):

1722 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

Ai (S) = [Ai−1(S) | ai (S)], i = 2, . . . , n, A1(S) = a1(S). (2.1)

We will consider positive definite Hermitian matrices M(S) ∈ C(S)m×m and N (S) ∈ C(S)n×n . The leading principal
submatrix Ni (S) ∈ C(S)i×i of N (S) is partitioned as

Ni (S) =

[
Ni−1(S) li (S)
l∗i (S) ni i (S)

]
, i = 2, . . . , n, (2.2)

where li (S) ∈ C(S)(i−1)×1 and ni i (S) is the complex polynomial. By N1(S) we denote the polynomial n11(S).
In the following lemma we generalize the representations of the weighted Moore–Penrose inverse from [24,1] to

the set of rational matrices of multiple complex variables C(S)m×n .
For the sake of simplicity, by X i (S) we denote the weighted Moore–Penrose inverse corresponding to M(S) and

submatrices Ai (S), Ni (S): X i (S) = Ai (S)
Ď
M Ni

, for each i = 2, . . . , n. Similarly X1(S) = a1(S)
Ď
M,N1

.

Lemma 2.1. Let A(S) ∈ C(S)m×n , assume that M(S) ∈ C(S)m×m , N (S) ∈ C(S)n×n are positive definite Hermitian
matrices, and let Ai (S) be the submatrix of A(S) consisting of its first i columns, as it is defined in (2.1). Assume that
the leading principal submatrix Ni (S) ∈ C(S)i×i is partitioned as in (2.2). Then the matrices X i (S) can be computed
in this way:

X1(S) =

{(
a∗

1(S)M(S)a1(S)
)−1 a∗

1(S)M(S), a1(S) 6= 0,
a∗

1(S), a1(S) = 0,
(2.3)

X i (S) =

[
X i−1(S)− (di (S)+ (I − X i−1(S)Ai−1(S)) N−1

i−1(S)li (S))b
∗

i (S)
b∗

i (S)

]
, i = 2, . . . , n, (2.4)

where the vectors di (S), ci (S) and b∗

i (S) are defined by

di (S) = X i−1(S)ai (S) (2.5)

ci (S) = ai (S)− Ai−1(S)di (S) = (I − Ai−1(S)X i−1(S)) ai (S) (2.6)

b∗

i (S) =

{(
c∗

i (S)M(S)ci (S)
)−1 c∗

i (S)M(S), ci (S) 6= 0
δ−1

i (S)
(
d∗

i (S)Ni−1(S)− li (S)
∗
)

X i−1(S), ci (S) = 0,
(2.7)

and where in b∗

i (S) is

δi (S) = ni i (S)+ d∗

i (S)Ni−1(S)di (S)−
(
d∗

i (S)li (S)+ l∗i (S)di (S)
)

− l∗i (S) (I − X i−1(S)Ai−1(S)) N−1
i−1(S)li (S). (2.8)

Also in [24], the authors used a block representation of the inverse N−1
i (S), which we also generalized to the set

of rational matrices.

Lemma 2.2. Let Ni (S) be the partitioned matrix defined in (2.2). Assume that Ni (S) and Ni−1(S) are both
nonsingular. Then

N−1
i (S) =


[

Ni−1(S) li (S)
l∗i (S) ni i (S)

]−1

=

[
Ei−1(S) fi (S)

f ∗

i (S) hi i (S)

]
, i = 2, . . . , n,

n−1
11 (S), i = 1,

(2.9)

where

hi i (S) =

(
ni i (S)− l∗i (S)N

−1
i−1(S)li (S)

)−1
(2.10)

fi (S) = −hi i (S)N
−1
i−1(S)li (S) (2.11)

Ei−1(S) = N−1
i−1(S)+ h−1

i i (S) fi (S) f ∗

i (S). (2.12)

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1723

In view of Lemmas 2.1 and 2.2, respectively, we present the following algorithms for computing the weighted
Moore–Penrose inverse and the inverse matrix N−1

i (S) ∈ C(S)i×i . These algorithms are generalizations of
corresponding algorithms from [1] to the set of multiple-variable rational matrices with complex coefficients.

Algorithm 2.1. Input: A(S) ∈ C(S)m×n and positive definite matrices M(S) ∈ C(S)m×m and N (S) ∈ C(S)n×n .

Step 1. Initial value: Compute X1(S) = a1(S)Ď defined in (2.3).
Step 2. Recursive step: For each i = 2, . . . , n compute X i (S) performing the following four steps:

Step 2.1. Compute di (S) using (2.5).
Step 2.2. Compute ci (S) using (2.6).
Step 2.3. Compute b∗

i (S) by means of (2.7) and (2.8).
Step 2.4. Applying (2.4) compute X i (S).

Step 3. The stopping criterion: i = n. Return Xn(S).

Algorithm 2.2. Let Ni (S) =

[
Ni−1(S) li (S)
l∗i (S) ni i (S)

]
be the leading principal submatrix of positive definite matrix N ∈

C(S)n×n . Then the inverse matrix N−1(S) can be computed as follows:

Step 1. Initial values: N−1
1 (S) = n−1

11 (S).
Step 2. Recursive step: For i = 2, . . . , n perform the following steps:

Step 2.1. Compute hi i (S) using (2.10).
Step 2.2. Compute fi (S) using (2.11).
Step 2.3. Compute Ei−1(S) using (2.12).
Step 2.4. Compute N−1

i (S) using (2.9).
Step 3. For i = n return the inverse matrix N−1(S) = N−1

n (S).

We used MATHEMATICA function Together in order to enable simplifications of rational expressions (this function
joins rational addends together and cancels common multipliers in the numerator and denominator).

3. Weighted Moore–Penrose inverse for multi-variable polynomial matrices

Now suppose that A(S) ∈ C[S]
m×n is a multi-variable polynomial matrix. We can represent it in the following

polynomial form:

A(S) =

d1∑
i1=0

· · ·

d2p∑
i2p=0

Ai1,...,i2p si1
1 · · · s

i2p
2p =

Q∑
I=0

AI S I , (3.1)

where I = (i1, . . . , i2p), AI = Ai1,...,i2p are constant m × n matrices, S I
= si1

1 si2
2 · · · s

i2p
2p , Q = (d1, . . . , d2p) =

deg A(S). Here di is the degree of the matrix polynomial with respect to the variable si in A(S).
If by J we denote J = (j2p, . . . , j1), where J = (j1, . . . , j2p) then it can be easily checked that it holds for

A∗(S) =
∑Q

J=0 A∗

J S J .
An application of Algorithm 2.1 to the multiple-variable polynomial matrix A(S) gives the following result.

Theorem 3.1. Let us consider A(S) ∈ C[S]
m×n of the form (3.1) and positive definite Hermitian matrices M(S) ∈

C(S)m×m and N (S) ∈ C(S)n×n . Assume that the leading principal submatrix Ni (S) ∈ C(S)i×i of N (S) is partitioned
as in (2.2). Then the weighted Moore–Penrose inverse AĎ

M Ni
(S) ∈ Ci×m

[S] corresponding to the first i columns in
A(S) is of the form

X i (S) = AĎ
M Ni

(S) =
Zi (S)

Yi (S)
, i = 1, . . . , n, (3.2)

where Zi (S) ∈ Cm×i
[S] and Yi (S) ∈ C[S], can be computed from Zi−1(S), Yi−1(S), Ai−1(S) and ai (S) using exact

recurrence relations.

1724 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

Proof. We will prove theorem by the induction. In the case i = 1 exact relations for Z1(S) and Y1(S) can be derived
from (2.3):

a1(S) = A1(S) = 0 ⇒ Z1(S) = 0, Y1(S) = 1

a1(S) = A1(S) 6= 0 ⇒ Z1(S) = a∗

1(S)M(S), Y1(S) = a∗

1(S)M(S)a1(S).

Consider now the inductive step. From the inductive hypothesis we can write X i−1(S) =
Zi−1(S)
Yi−1(S)

. Then X i (S) can be
computed by using Step 2 of Algorithm 2.1. From Steps 2.1 and 2.2 we have:

di (S) = X i−1(S)ai (S) =
Zi−1(S)ai (S)

Yi−1(S)
=

Di (S)

Yi−1(S)

ci (S) = ai (S)− Ai−1(S)di (S) =
ai (S)Yi−1(S)− Ai−1(S)Di (S)

Yi−1(S)
=

Ci (S)

Yi−1(S)
.

If Ci (S) 6= 0, according to the Step 2.3 of Algorithm 2.1 we have:

b∗

i (S) =

C∗
i (S)

Y ∗

i−1(S)
M(S)

C∗
i (S)

Y ∗

i−1(S)
M(S) Ci (S)

Yi−1(S)

=
Yi−1(S)C∗

i (S)M(S)

C∗

i (S)M(S)Ci (S)
=

Vi (S)

Wi (S)
.

Otherwise, we need to evaluate first the expression δi (S). From (2.8) we obtain:

δi (S) = ni i (S)+
D∗

i (S)

Y ∗

i−1(S)
Ni−1(S)

Di (S)

Yi−1(S)
−

(
D∗

i (S)

Y ∗

i−1(S)
li (S)+ l∗i (S)

Di (S)

Yi−1(S)

)
− l∗i (S)

φi (S)

ψi (S)
. (3.3)

Here we used the inductive hypothesis together with temporary polynomial matrix φi (S) ∈ C[S]
(i−1)×1 and

polynomial ψi (S) are defined by:

(I − X i−1(S)Ai−1(S)) N−1
i−1(S)li (S) =

Yi−1(S)I − Zi−1(S)Ai−1(S)

Yi−1(S)
·

Ñi−1(S)

N̆i−1(S)
· li (S)

=
Yi−1(S)Ñi−1(S)li (S)− Zi−1(S)Ai−1(S)Ñi−1(S)li (S)

Yi−1(S)N̆i−1(S)

=
φi (S)

ψi (S)
. (3.4)

Also, we use N−1
i−1(S) =

Ñi (S)
N̆i (S)

, where Ñi (S) ∈ C[S]
(i−1)×(i−1) and N̆i (S) ∈ C[S] are defined in the next theorem.

By collecting addends under the same denominator in (3.3) we can write δi (S) in the form:

δi (S) =
∆̃i (S)

∆̆i (S)
,

where:

∆̃i (S) = ni i (S)N̆i−1(S)Y
∗

i−1(S)Yi−1(S)+ N̆i−1(S)D
∗

i (S)Ni−1(S)Di (S)
−
(
Yi−1(S)D

∗

i (S)li (S)+ Y ∗

i−1(S)Di (S)l
∗

i (S)
)

N̆i−1(S)− l∗i (S)φi (S)Y
∗

i−1(S)

∆̆i (S) = Y ∗

i−1(S)Yi−1(S)N̆i−1(S).

Now we apply Step 2.3 in the case Ci (S) = 0 and evaluate b∗

i (S):

b∗

i (S) =
∆̃i (S)

∆̆i (S)

(
D∗

i (S)

Y ∗

i−1(S)
Ni−1(S)− li (S)

∗

)
Zi−1(S)

Yi−1(S)

=
Ñi−1(S)

(
D∗

i (S)Ni−1(S)− Y ∗

i−1(S)l
∗

i (S)
)

Zi−1(S)

∆̆i (S)
=

Vi (S)

Wi (S)
.

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1725

Let us now rewrite expression (2.4) in the following way:

X i (S) =


Zi−1(S)

Yi−1(S)
−

(
Di (S)

Yi−1(S)
+
φi (S)

ψi (S)

)
Vi (S)

Wi (S)
Vi (S)

Wi (S)


=

1
Wi (S)ψi (S)

[
Wi (S)N̆i−1(S)Zi−1(S)−

(
Di (S)N̆i−1(S)+ φi (S)

)
Vi (S)

N̆i−1(S)Yi−1(S)Vi (S)

]
.

From the last expression we obviously have that it holds for:

Zi =

[
Wi (S)N̆i−1(S)Zi−1(S)−

(
Di (S)N̆i−1(S)+ φi (S)

)
Vi (S)

N̆i−1(S)Yi−1(S)Vi (S)

]
=

[
Θi (S)
Ψi (S)

]
Yi = Wi (S)ψi (S).

This completes the proof of the theorem. �

Theorem 3.2. Let the leading principal submatrix Ni (S) of the positive definite matrix N (S) ∈ C[s]n×n be
partitioned as in (2.2). Then the inverse N−1

i (S) is of the form:

N−1
i (S) =

Ñi (S)

N̆i (S)
=

1

N̆i (S)

[
Ei−1(S) Fi (S)
F∗

i (S) Hi i (S)

]
,

where Ei−1(S) ∈ C(i−1)×(i−1), F∗

i (S) ∈ C(i−1)×1 and scalar Hi i (S) ∈ C[s] can be computed from Ni−1(S), l(S),
ni i (S), Ñi−1(S) and N̆i−1(S) using exact recurrence relations.

Proof. As in the proof of the previous theorem we will use induction and Lemma 2.2 (Algorithm 2.2). The case i = 1
is again trivial and we have:

Ñ1(S) = 1, N̆1(S) = n11(S).

Let us consider now the inductive step and suppose that N−1
i−1(S) =

Ñi−1(S)
N̆i−1(S)

. From the relation (2.10) we have:

1
Hi i (S)

= ni i (S)− l∗i (S)
Ñi−1(S)

N̆i−1(S)
li (S)

=
N̆i−1(S)ni i (S)− l∗i (S)Ñi−1(S)li (S)

N̆i−1(S)
=

H̆ĭ (S)

N̆i−1(S)
. (3.5)

Therefore, we can write Hi i (S) =
N̆i−1(S)

H̆ĭ (S)
. Using the relation (2.11) we can represent fi (S) in the following way:

fi (S) = −
Ñi−1(S)

H̆ĭ (S)
· l∗i (S) ·

Ñi−1(S)

N̆i−1(S)
= −

l∗i (S)Ñi−1(S)

H̆i (S)
=

F̃i (S)

H̆i (S)
.

Furthermore using the fact that Ñi−1(S) is symmetric and positive definite, we can conclude that F̃∗

i (S) =

Ñi−1(S)li (S) which further implies that:

f ∗

i (S) =
F̃∗

i (S)

H̆∗

i (S)
=

Ñi−1(S)li (S)

H̆i (S)
.

We also used that H̆i (S) = H̆∗

i (S) which can be easily proven from (3.5). From (2.12) we can conclude:

Ei−1 =
Ñi−1(S)

N̆i−1(S)
+

H̆i (S)

N̆i−1(S)

F̃i (S)

H̆i (S)

F̃∗

i (S)

H̆i (S)

=
Ñi−1(S)− F̃i (S)F̃∗

i (S)

N̆i−1(S)H̆i (S)
=

Ẽi−1(S)

N̆i−1(S)H̆i (S)
.

1726 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

Finally, we can represent N−1
i (S) in the following matrix form:

N−1
i (S) =


Ẽi−1(S)

N̆i−1(S)H̆i (S)

F̃i (S)

H̆i (S)

F̃∗

i (S)

H̆i (S)

N̆i−1(S)

H̆i (S)


=

1

H̆i (S)N̆i−1(S)

[
Ẽi−1(S) N̆i−1(S)F̃i (S)

N̆i−1(S)F̃
∗

i (S) N̆i−1(S)
2

]
=

Ñi (S)

N̆i (S)
.

This completes the proof of the theorem. �

Now it is easy to construct corresponding algorithms from the Theorems 3.1 and 3.2.

4. Effective method

In practice we often work with polynomial matrices A(S) with a relatively small number of nonzero coefficients.
In that case, the previous algorithm is not effective because many operations are redundant. To avoid this problem
we will construct two appropriate sparse structures for the representation of the polynomial matrix A(S) and the
corresponding effective algorithm for computing AĎ

M N (S). The first sparse representation is denoted by Eff and its
improvement by Eff′, while the second structure is denoted by Ef.

The main idea in the first considered sparse structure is to exploit only nonzero coefficient matrices AI =

Ai1,...,i2p 6= 0 of the polynomial matrix A(S) given in the form (3.1).

Definition 4.1. The effective sparse structure of the polynomial matrix A(S), defined in (3.1), is equal to:

EffA = {(J, AJ) | AJ 6= 0, 0 ≤ J ≤ deg A(S)}. (4.1)

Also define the index set of this effective structure by:

IndA = {J | AJ 6= 0, 0 ≤ J ≤ deg A(S)} . (4.2)

Define operations +,−, · and * on sparse structures as:

EffA + EffB = EffA+B, EffA − EffB = EffA−B,

EffA · EffB = EffA·B, Eff∗A = EffA∗ .
(4.3)

Denote by eA = |EffA| = |IndA| the size of the structure EffA.

Obviously we have

A(S) · B(S) =

∑
I∈IndA
J∈IndB

AI BJ S I+J ,

where

S I+J
= si1+ j1

1 . . . s
i2p+ j2p
2p .

If C(S) = A(S)B(S) then the elements of EffC are pairs (K ,CK) where CK is defined as the following sum of matrix
products:

CK =

∑
I∈IndA ,

K−I∈IndB

AI BK−I , (4.4)

where CK 6= 0. Therefore it holds for eC ≤ eA + eB and EffC = EffA · EffB can be computed in the time O(eA · eB).
Similarly it holds for computing the sum C(S) = A(S)+ B(S). Elements of EffC are pairs (K ,CK) where values

CK are defined by

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1727

CK =

AK , AK 6= 0, BK = 0
BK , BK 6= 0, AK = 0
AK + BK , AK 6= 0, BK 6= 0

(4.5)

and satisfy CK 6= 0. As in the previous case we can conclude that eC ≤ max{eA, eB} and EffC can be computed in
time O(max{eA, eB}).

Index sets corresponding to addition and multiplication of sparse matrices are equal to:

IndA+B = IndA ∪ IndB, IndAB = IndA + IndB .

In view of (4.3), we compute Eff∗A = {(I, A∗

I) | (I, AI) ∈ EffA} in time O(eA).
Usually, coefficient matrices AI in the polynomial representation (3.1), i.e. in the sparse representation (4.1) are

sparse. Using this fact we can significantly improve our sparse structure Eff by using an appropriate structure for these
constant coefficient matrices.

Definition 4.2. For the constant matrix A = [ai j] ∈ Cm×n , denote the following sparse structure:

SpA =
{
(i, j, ai j) | ai j 6= 0

}
. (4.6)

Denote by sA = |SpA| the size of the structure SpA.

Similarly as in the case of EffA, we can define elementary operations on these sparse structures:

SpA + SpB = {(i, j, ai j + bi j) | (i, j, ai j) ∈ SpA ∨ (i, j, bi j) ∈ SpB, ai j + bi j 6= 0}

SpA · SpB =

{
(i, j, ci j) | ci j =

∑
aikbk j 6= 0, (i, k, aik) ∈ SpA ∧ (k, j, bk j) ∈ SpB

}
Sp∗

A = {(j, i, a∗

i j) | (i, j, ai j) ∈ SpA}.

In this way, we have the following improvement of the structure Eff:

Eff′A =
{
(J,SpAJ

) | AJ 6= 0, 0 ≤ J ≤ deg A(S)
}

=
{(

J, {i, j, (AJ)i j | (AJ)i j 6= 0}
)

| AJ 6= 0, 0 ≤ J ≤ deg A(S)
}
. (4.7)

It can be seen that the complexity of computing SpA + SpB is O(sA + sB) and for Sp∗

A is O(sA). In the case
of multiplication the complexity depends on concrete implementation. Suppose that A ∈ Cm×n and B ∈ Cn×p.
If the triples are sorted lexicographically in SpA and in SpB then for every (i, k, Aik) ∈ SpA we need to find all
(k, j, Bk j) ∈ SpB , i.e. all triples in SpB which begin by k. If we denote this number by s(k)B :

s(k)B = |{(k, j, bk j) ∈ SpB | j = 1, . . . , p}|

then the complexity of multiplication SpA · SpB is:

O

 ∑
(i,k,aik)∈SpA

s(k)B + m · p

 . (4.8)

The last addend in (4.8) comes from the fact that we need to construct the sparse structure SpC for the matrix
C = AB ∈ Cm×p.

We implemented the sparse structure Sp in MATHEMATICA as the structure SparseArray. MATHEMATICA
offers a sparse representation for matrices, vectors, and tensors with SparseArray [29,30]. Both of the expressions

SparseArray[{i1, j1} → v1, {i2, j2} → v2, . . . ,]

SparseArray[{{i1, j1}, {i2, j2}, . . .} → {v1, v2, . . .}]

represent the SparseArray with elements in positions {ik, jk} having values vk .
Operations on sparse matrices are all equivalent to the operations on dense matrices [29,30]: Plus(+) for matrix

addition, Dot (.) for matrix multiplication, Times (*) for multiplication by scalar, etc.

1728 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

Therefore, in our implementation we have

Eff′A = {(J, SparseArray[AJ]) | AJ 6= 0, 0 ≤ J ≤ deg A(S)}.

The shown fact that basic operations are the same for dense and sparse matrices allows us to use the same procedures
for basic operations on Eff in cases when Sp is embedded in Eff and when it is not. In procedural programming of
languages we can decide to use Sp or not in the beginning of algorithm, depending on the structure of input matrices
A(S), M(S) and N (S). Similarly, it is possible to change the choice of one between these two variants of the structure
Eff during the algorithm implementation.

In the second type of the sparse structure for polynomial matrices we represent the matrix A(S) in the form
A(S) = [ai j (S)], where ai j (S) are scalar polynomials, and construct effective sparse structures Effai j for each ai j (S).

Effective structure Effa for the scalar polynomial a(S) =
∑deg a(S)

I=1 aI S I is defined similarly as in the matrix case
(4.1):

Effa = {(J, aJ) | aJ 6= 0, 1 ≤ J ≤ deg a(S)}.

Such sparse representation we denote by Ef, and have EfA = [Effai j]. If we use notations efA =
∑m

i=1
∑n

j=1 eai j ,
then the complexity for the addition is

O

(
m∑

i=1

n∑
j=1

eai j + ebi j

)
= O(efA + efB).

After the notations row(B, k) =
∑p

j=1 ebk j and col(A, k) =
∑m

i=1 eaik we conclude that the complexity of the matrix
multiplication C = AB is equal to

O

(
m∑

i=1

n∑
k=1

p∑
j=1

eaik ebk j

)
= O

(
n∑

k=1

m∑
i=1

eaik row(A, k)

)

= O

(
n∑

k=1

col(A, k)row(B, k)

)
for the multiplication.

Polynomials in MATHEMATICA are represented in the internal form using the little modified Ef sparse structure.
For example, two-variable polynomial p(s1, s2) = 4s9

1s10
2 + s3

2 + s2
1 s2

2 + 3s3
1 s2 + s2 + 2s2

1 + 3s1 + 10 is represented
in the following MATHEMATICA internal form:

Plus[
10,
Times[3, s1],
Times[2, Power[s1, 2]],
s2,
Times[3, Power[s1, 3], s2],
Times[Power[s1, 2], Power[s2, 2]],
Power[s2, 3],
Times[4, Power[s1, 9], Power[s2, 10]]
].

The last expression is obtained by using MATHEMATICA function FullForm[E] which returns an internal
representation of the expression E [29,30]. This internal form of the polynomial p(S), at the top level is the list
with length efp with the head Plus. Each element of this list contains the exponent J = (j1, j2) and the value pJ
(values j1 = 0, 1 and j2 = 0, 1 and are not shown), hence the length of each element is O(1). Also the size of whole
structure is O(efp(s)). Therefore, we can use this natural polynomial representation in MATHEMATICA and built-in
elementary operators to implement the effective partitioning method using the Ef structure. The complexity of these
built-in operations are the same as the corresponding operations defined for Ef structure.

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1729

The next algorithm is the effective partitioning method for computing the weighted Moore–Penrose inverse of
polynomial matrices, suitable for sparse matrices. Generally, the same method can be used with both two presented
sparse structures. Therefore, we will denote general sparse structure with E , which can be exchanged either by Eff
or Ef. Also by O we will denote the general effective structure of an appropriate zero matrix. We will use the same
symbol for the effective structure of the number 0.

Algorithm 4.1 (Computing the Weighted Moore–Penrose Inverse A(S)ĎM(S),N (S) of Sparse Matrix A(S)). Input:
Effective structures of matrices A(S), M(S), N (S).

Step 1. In the case Ea1 6= O compute initial values:

EZ1 = E∗
a1

· EM , EY1 = E∗
a1

· EM · Ea1 .

If Ea1 = O, then set EZ1 = O and EY1 = E1, where E1 is the corresponding sparse structure of the number 1.
Step 2. Recursive step: For i = 2, . . . , n perform the following steps

Step 2.1 Compute: Edi = EZi−1 · Eai

Step 2.2 Compute: Eci = Eai · EYi−1 − EAi−1 · Edi

Step 2.3 If Eci 6= O then compute EVi and EWi using
EVi = EYi−1 · E∗

ci
· EM

EWi = E∗
ci

· EM · Eci .

Otherwise use the following formulae:
EVi = E∆̆i

· (E∗

di
· ENi−1 − E∗

li · EYi−1) · EZi−1

EWi = E∆̃i
· E∗

Yi−1
· EYi−1 ,

where the structures ∆̆i and ∆̃i are defined by:
E∆̆i

= Eψi · E∗

Yi−1
· EYi−1

E∆̃i
= (EYi−1 · (Eni iEYi−1 − Ed∗

i
· Eli − El∗i

· Edi)+ Ed∗ · ENi−1 · EDi) · EN̆i−1

− EYi−1 · El∗i
· Eϕi .

We used sparse representations for temporary variables ϕi and ψi , defined in (3.4):
Eϕi = (EYi−1 · EI − EZi−1 · EAi−1) · EÑi−1

· Eli

Eψi = EYi−1 · EN̆i−1
.

Step 2.4. Now compute EZi and EYi using:

Zi =

[
Θi
Ψi

]
, EYi = Eψi · EWi .

Structures EΘi and EΨi are defined by:
EΘi = EZi−1 · EN̆i−1

· EWi − Edi · EN̆i−1
· EVi − EϕiEVi

EΨi = Eψi · EVi .

If we use Ef or Eff sparse structure, EZi is equal respectively to:

EfZi =

[
EfΘi

EfΨi

]
EffZi =

{(
j,

[
(Θi) j
(Ψi) j

])∣∣∣∣ (j, (Θi) j) ∈ EffΘi , (j, (Ψi) j) ∈ EffΨi

}
∪

{(
j,

[
(Θi) j

0

])∣∣∣∣ (j, (Θi) j) ∈ EffΘi , (Ψi) j = 0
}

∪

{(
j,

[
0

(Ψi) j

])∣∣∣∣ (Θi) j = 0, (j, (Ψi) j) ∈ EffΨi

}
. (4.9)

Step 2.5. Find the polynomials Zi (S) and Yi (S) from its effective structures and compute:

X i (S) =
Zi (S)

Yi (S)
, (4.10)

Cancel the common multipliers in numerator Zi (S) and denominator Yi (S), recompute (if
necessary) effective structures and continue with the next i .

1730 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

Step 3. The stopping criterion is i = n. In this case is AĎ
M(S),N (S)(S) = Xn(S).

Similarly we can derive a modification of the method introduced in Theorem 3.2 for computing the inverse matrix
N−1

i (S) in the polynomial form:

N−1
i (S) =

Ñi (S)

N̆i (S)
. (4.11)

Algorithm 4.2 (Effective Computation of N−1
i (S), For i = 1, . . . , n). Input: Effective structure of positive definite

Hermitian polynomial matrix N (S) of the order n. Notations are the same as in Theorem 3.2.

Step 1. Generate initial values: Ñ1 = I and N̆1 = n11 and corresponding effective structures.
Step 2. Recursive step: For i = 2, . . . , n perform following steps:

Step 2.1. Compute: EH̆i
= Eni i · EN̆i−1

− E∗

li
· EÑi−1

· Eli .
Step 2.2. Compute: EF̃i

= −EÑi−1
· Eli .

Step 2.3. Compute: EẼi
= EÑi−1

− EFi · E∗

Fi
.

Step 2.4. Generate:

Ñi (S) =

[
Ẽi−1(S) N̆i−1(S) · F̃i (S)

N̆i−1(S) · F̃∗

i (S) N̆ 2
i−1(S)

]
N̆i (S) = N̆i−1(S) · H̆i (S).

As in the previous algorithm, we have also two different representations for Ef and Eff sparse
structures. These relations are similar to (4.8).

Step 3. Stop criterion for i = n. Inverse matrix N−1
k (S), for every k = 1, . . . , n is equal to:

N−1
k (S) =

Ñk(S)

N̆k(S)
. (4.12)

5. Examples

We implemented Algorithms 2.1, 2.2, 4.1 and 4.2 in the programming language MATHEMATICA. An
implementation of the Eff sparse structure is also made. Functions WPolyEf and WPolyEff implement Algorithm 4.1
using respectively Ef and Eff sparse structures. All basic operations for Eff sparse structure (functions Add, Sub,
Muls, Mul and TE corresponding to the addition, subtraction, multiplication by scalar, multiplication and conjugate-
transposition respectively) are also implemented.

Example 5.1. Let us find the weighted Moore–Penrose inverse of the following two-variable polynomial matrix
A(x, y):

A(x, y) =

 1 − 3x 5 + 9x − 10y 16 + 8x + 2y
−7 + 9x − 8y 8 + 5x − y 4 + 2x + 3y

7 − x − 8y 16 − 2x − 6y −3 − 2x − 4y


with respect to the following matrices M(x, y) and N (x, y):

M(x, y) =

 −20 − x − x −8 − 7x − 4x −2(8 + 3x + 4x)
−8 − 4x − 7x −20 + 7x + 7x 2(5x − x)

−2(8 + 4x + 3x) −2(x − 5x) 7(−2 + x + x)


N (x, y) =

16 + 7x + 7x 7 − 6x − 2x 6 − 10x − 3x
7 − 2x − 6x −2(3 + 5x + 5x) −2(6 + 4x + 3x)

6 − 3x − 10x −2(6 + 3x + 4x) −3(−6 + x + x)

 .
The obtained weighted Moore–Penrose inverse is:

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1731

X (x, y) = AĎ
M(x,y),N (x,y)(x, y) =

(
60x3

− 5yx2
− 540x2

+ 51yx + 779x − 42y − 435
)−1

×

 −5x2
+ 51x − 42 −3x2

+ 8x − 13 −3x2
+ 33x − 4

−30x2
+ 71x + 15 42x2

− 5yx − 33x + y + 15 −18x2
− 63x + 10y + 105

−2
(

10x2
− 19x + 12

)
2
(

18x2
− 2yx − 29x + 2y + 17

)
−24x2

+ yx + 42x − 2y − 23

 .

Let us notice that degrees of intermediate results in Algorithms 4.1 and 4.2 are much greater than the degrees of
A,M, N and X (maximum degree in this example are 874 and 122 of the variables x and y respectively). This is the
reason why the algorithms for computing the weighted Moore–Penrose inverse for polynomial matrices are very slow
(working time of the function WPolyEff for the last example is 172.922 s). As we will see in the sequel, when matrices
A, M and N are sparse, corresponding intermediate results are also sparse. Therefore, sparse structures introduced in
the previous section improve the working time of the implementation.

Algorithm 4.1 is tested on several random generated test examples. We tested variants of Algorithm 4.1 using Ef
and Eff sparse structures separately. In this test, matrices A(S), M(S) and N (S) were complex polynomial matrices
of one variable s (i.e. they hold for S = (s, s)).

We did the testing for two different classes of matrices: sparse and dense. The measures representing sparsity of a
given polynomial matrix are the same as in [19] (Definitions 6.1 and 6.2). We are now restating these two definitions
and generalizing them to the multi-variable complex polynomial matrices.

Definition 5.1. For a given matrix A(S) = [ai j (S)] ∈ C[S]
m×n (polynomial or constant), the first sparse number

sp1(A) is the ratio of the total number of nonzero elements and total number of elements in A(S):

sp1(A(S)) =

∣∣{(i, j) | ai j (S) 6= 0}
∣∣

m · n
.

The first sparse number represents the density of nonzero elements and it is between 0 and 1.

m n d Algorithm 4.1
with Ef

Algorithm 4.1
with Eff

m n d Algorithm 4.1
with Ef

Algorithm 4.1
with Eff

sp1(A(S)) = 0.9, sp2(A(S)) = 0.9 sp1(A(S)) = 0.7, sp2(A(S)) = 0.5
2 2 1 0.14 0.188 2 2 1 0.06 0.89
2 2 2 0.65 1.24 2 2 2 0.25 0.46
2 2 3 1.92 3.93 2 2 3 0.60 1.23
3 3 1 1.34 1.32 3 3 1 0.47 0.68
3 3 2 9.01 11.81 3 3 2 4.60 7.18
3 3 3 34.39 48.13 3 3 3 14.89 24.65
4 4 1 7.87 6.74 4 4 1 6.10 6.18
4 4 2 69.31 64.48 4 4 2 34.95 39.68
4 4 3 461.07 594.98 4 4 3 256.31 299.61
5 5 1 49.13 58.48 5 5 1 30.85 39.43
5 5 2 309.38 330.32 5 5 2 246.32 283.12
sp1(A(S)) = 1, sp2(A(S)) = 0.2 sp1(A(S)) = 0.2, sp2(A(S)) = 0.2
2 2 1 0.04 0.112 2 2 1 0.032 0.105
2 2 2 0.11 0.263 2 2 2 0.069 0.190
2 2 3 0.422 1.303 2 2 3 0.187 0.713
3 3 1 0.281 0.972 3 3 1 0.185 0.675
3 3 2 1.367 3.505 3 3 2 0.628 2.944
3 3 3 5.808 18.449 3 3 3 1.031 3.275
4 4 1 1.613 5.549 4 4 1 0.987 4.344
4 4 2 12.134 27.113 4 4 2 6.087 25.263
4 4 3 55.139 107.27 4 4 3 27.466 176.581
5 5 1 7.475 13.582 5 5 1 3.294 15.853
5 5 2 84.712 139.681 5 5 2 42.159 171.416

1732 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

Definition 5.2. For a given polynomial matrix A(S) ∈ C[S]
m×n and S = (s1, . . . , sp), the second sparse number

sp2(A(S)) is the following ratio:

sp2(A(S)) =

#{(i, j, k1, . . . , kp) | 0 ≤ k j ≤ deg
s j

A(S),Coef(ai j (S), sk1
1 · · · s

kp
p) 6= 0}

deg
s1

A · · · deg
sp

A · m · n
.

By Coef(P(S), sk1
1 · · · s

kp
p) we denoted the coefficient corresponding to sk1

1 · · · s
kp
p in polynomial P(S).

The second sparse number represents density of nonzero coefficients contained in elements ai j (S), and it is also
between 0 and 1.

Results are presented in the next table (column d states for the degree of corresponding matrix polynomials A(S),
M(S) and N (S)):

All presented processor times are in seconds and the sparse numbers for matrices M(S) and N (S) are the same
as the corresponding sparse numbers for A(S). Every processor time is obtained by averaging working times of
15 different randomly generated test cases. Testing was done on an Intel Pentium 4 processor at 2.6 GHz and
MATHEMATICA 5.2. We can notice that Algorithm 4.1 with an Ef structure showed best timings on all test cases. We
have already mentioned that an Ef sparse structure is already implemented in MATHEMATICA. In the implementation
we used standard built-in operators for manipulation with matrices in Ef structure.

The first table (when sp1(A(S)) = sp2(A(S)) = 0.9) corresponds to dense matrices. In this case, sparse structures
are not so effective because there are a lot of nonzero elements in all matrices and nonzero coefficients in polynomials.
But we can notice a significant improvement in working time when Ef structure is applied against the case when Eff
structure is applied. This difference mainly comes from the fact that Ef structure is implemented by MATHEMATICA
built-in operations.

m n d Algorithm 2.1 Algorithm 4.1 with Eff Algorithm 4.1 with Ef Algorithm 3.1 from [1]

sp1(A(S)) = 0.7, sp2(A(S)) = 0.7
3 3 1 0.32 0.23 0.10 0.94
3 3 2 0.69 0.57 0.20 1.32
3 3 3 0.82 1.17 0.43 1.84
3 3 4 1.19 2.15 0.73 2.38
4 3 1 0.76 1.26 0.14 1.29
4 3 2 1.29 0.65 0.31 2.12
4 3 3 2.14 1.32 0.59 2.42
4 3 4 2.84 2.26 1.01 2.93
5 5 1 3.48 1.45 1.01 3.56
5 5 2 5.90 4.54 2.92 4.92
5 5 3 9.18 8.79 6.82 8.27
5 5 4 12.15 15.87 10.85 10.34
6 6 1 7.98 2.65 2.17 8.16
6 6 2 12.93 8.20 7.31 11.32
6 6 3 21.76 18.29 13.53 19.42

The second case (when sp1(A(S)) = 0.7 and sp2(A(S)) = 0.5) represents sparse matrices. We can notice that
working times are significantly less than in the first case. Also here Ef structure produces less working times than Eff.

In the third and fourth cases (when sp1(A(S)) = 1 and sp2(A(S)) = 0.2, and sp1(A(S)) = sp2(A(S)) = 0.2,
respectively) we deal with matrices whose entries are very sparse polynomials. Moreover, in the fourth case we work
with matrices with only few nonzero elements. In the fourth case, smallest average working times are obtained for all
considered matrix dimensions and degrees. Also we can notice that as sparse numbers decrease, the average working
times also decrease (for constant matrix dimensions and degree). This holds for both sparse structures and verifies the
theoretical results about sparse structures Ef and Eff in practice.

We also considered a simpler case: when all input matrices (A(S), M(S) and N (S)) and variables s1, . . . , sp are
assumed to be real. In that case we have only p variables and conjugate-transpose operation reduces only to transpose.
We also should suppose that matrices M(S) and N (S) are symmetric in that sense. Algorithms 4.1 and 4.2 remain

M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734 1733

the same except that we should change the definition of conjugate-transpose operator (also the implementations in
MATHEMATICA). This case is considered in [1] and Algorithms 4.1 and 4.2 are effective versions of corresponding
Algorithms 3.1 and 3.2 in [1]. Here working times of the algorithms are significantly less, and also the inverses have
much smaller degrees. Results obtained in this special case are presented in the following table:

It can be seen from the table that here in all cases Ef structure was better than Eff (both with using Algorithm 4.1).
Both effective algorithms were significantly better than Algorithm 2.1 (for rational matrices) and Algorithm 3.1
from [1]. For smaller values of d , Algorithm 2.1 was better than Algorithm 3.1 from [1] due to the implementation
details.

All presented results lead us to the same conclusion: the best choice for computing weighted Moore–Penrose
inverse for polynomial matrices is Algorithm 4.1 with the sparse structure Ef.

6. Conclusion

We extend the algorithm for computing the weighted Moore–Penrose from [27] to the set of multiple-variable
rational matrices with complex coefficients. We adapt the previous algorithm to the set of polynomial matrices.
We consider two effective structures which make use of only nonzero addends in polynomial matrices and improve
previous results on the set of sparse matrices. In the last section we presented an illustrative example and compared
various algorithms.

References

[1] M.B. Tasić, P.S. Stanimirović, M.D. Petković, Symbolic computation of weighted Moore–Penrose inverse using partitioning method, Appl.
Math. Comput. 189 (2007) 615–640.

[2] P.S. Stanimirović, M.B. Tasić, Partitioning method for rational and polynomial matrices, Appl. Math. Comput. 155 (2004) 137–163.
[3] M.D. Petković, P.S. Stanimirović, Symbolic computation of the Moore–Penrose inverse using partitioning method, Internat. J. Comput. Math.

82 (2005) 355–367.
[4] A. Ben-Israel, T.N.E. Grevile, Generalized Inverses, Theory and Applications, second ed., Canadian Mathematical Society, Springer, New

York, 2003.
[5] S. Barnett, Leverrier’s algorithm: A new proof and extensions, SIAM J. Matrix Anal. Appl. 10 (1989) 551–556.
[6] G. Fragulis, B.G. Mertzios, A.I.G. Vardulakis, Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion,

Internat. J. Control 53 (1991) 431–443.
[7] N.P. Karampetakis, Generalized inverses of two-variable polynomial matrices and applications, Circuits Syst. Signal Process. 16 (1997)

439–453.
[8] N.P. Karampetakis, Computation of the generalized inverse of a polynomial matrix and applications, Linear Algebra Appl. 252 (1997) 35–60.
[9] P.S. Stanimirovic, N.P. Karampetakis, Symbolic implementation of Leverrier–Faddeev algorithm and applications, in: 8th IEEE Medit.

Conference on Control and Automation, Patra, Greece, 2000.
[10] N.P. Karampetakis, P. Tzekis, On the computation of the generalized inverse of a polynomial matrix, in: 6th Medit. Symposium on New

Directions in Control and Automation, 1998, pp. 1–6.
[11] J. Jones, N.P. Karampetakis, A.C. Pugh, The computation and application of the generalized inverse via Maple, J. Symbolic Comput. 25

(1998) 99–124.
[12] N.P. Karampetakis, Generalized inverses of two-variable polynomial matrices and applications, Circuits Syst. Signal Process. 16 (1997)

439–453.
[13] N.P. Karampetakis, P. Tzekis, On the computation of the generalized inverse of a polynomial matrix, IMA J. Math. Control Inform. 18 (2001)

83–97.
[14] F. Bu, Y. Wei, The algorithm for computing the Drazin inverses of two-variable polynomial matrices, Appl. Math. Comput. 147 (2004)

805–836.
[15] J. Ji, A finite algorithm for the Drazin inverse of a polynomial matrix, Appl. Math. Comput. 130 (2002) 243–251.
[16] N.P. Karampetakis, P.S. Stanimirović, On the computation of the Drazin inverse of a polynomial matrix, in: 1rst IFAC Symposium on System

Structure and Control, Prague, Czech Republic, 2001.
[17] P.S. Stanimirovic, M.B. Tasić, Drazin inverse of one-variable polynomial matrices, Filomat, Niš 15 (2001) 71–78.
[18] P.S. Stanimirović, A finite algorithm for generalized inverses of polynomial and rational matrices, Appl. Math. Comput. 144 (2003) 199–214.
[19] M.D. Petković, P.S. Stanimirović, Computing generalized inverse of polynomial matrices by interpolation, Appl. Math. Comput. 172 (2006)

508–523.
[20] N.P. Karampentakis, S. Vologianidis, DFT calculation of generalized and Drazin inverse of polynomial matrix, Appl. Math. Comput. 143

(2003) 501–521.
[21] S. Vologiannidis, N.P. Karampetakis, Inverses of multivariable polynomial matrices by discrete Fourier transforms, Multidimens. Syst. Signal

Process. 15 (2004) 341–361.
[22] T.N.E. Grevile, Some applications of the pseudo-inverse of matrix, SIAM Rev. 3 (1960) 15–22.
[23] S.L. Campbell, C.D. Meyer Jr., Generalized Inverses of Linear Transformations, Pitman, London, 1979.

1734 M.D. Petković et al. / Computers and Mathematics with Applications 55 (2008) 1720–1734

[24] G.R. Wang, Y.L. Chen, A recursive algorithm for computing the weighted Moore–Penrose inverse AĎ
M N , J. Comput. Math. 4 (1986) 74–85.

[25] F.E. Udwadia, R.E. Kalaba, An alternative proof of the Greville formula, J. Optim. Theory Appl. 94 (1997) 23–28.
[26] Y. Fan, R. Kalaba, Dynamic programming and pseudo-inverses, Appl. Math. Comput. 139 (2003) 323–342.
[27] G.R. Wang, A new proof of Grevile’s method for computing the weighted M–P inverse, J. Shangai Normal Univ. (Natural Science Edition) 3

(1985).
[28] N. Shinozaki, M. Sibuya, K. Tanabe, Numerical algorithms for the Moore–Penrose inverse of a matrix: Direct methods, Ann. Inst. Statist.

Math. 24 (1) (1972) 193–203.
[29] S. Wolfram, Mathematica Book, Version 3.0, Wolfram Media and Cambridge University Press, 1996.
[30] S. Wolfram, The Mathematica Book, fourth ed., Wolfram Media, Cambridge University Press, 1999.

	Effective partitioning method for computing weighted Moore--Penrose inverse
	Introduction
	Weighted Moore--Penrose inverse for multi-variable rational matrices
	Weighted Moore--Penrose inverse for multi-variable polynomial matrices
	Effective method
	Examples
	Conclusion
	References

