22 research outputs found

    XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos

    Get PDF
    AbstractXTcf-3 is a maternally expressed Xenopus homolog of the mammalian HMG box factors Tcf-1 and Lef-1. The N-terminus of XTcf-3 binds to β-catenin. Microinjection of XTcf-3 mRNA in embryos results in nuclear translocation of β-catenin. The β-catenin–XTcf-3 complex activates transcription in a transient reporter gene assay, while XTcf-3 by itself is silent. N-terminal deletion of XTcf-3 (ΔN) abrogates the interaction with β-catenin, as well as the consequent transcription activation. This dominant-negative ΔN mutant suppresses the induction of axis duplication by microinjected β-catenin. It also suppresses endogenous axis specification upon injection into the dorsal blastomeres of a 4-cell-stage embryo. We propose that signaling by β-catenin involves complex formation with XTcf-3, followed by nuclear translocation and activation of specific XTcf-3 target genes

    Корекція гемореологічних порушень у хворих на цукровий діабет з використанням низькоінтенсивного лазерного опромінення крові

    Get PDF
    In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis. Murine Prox1-null embryos lack lymphatic structures, and sustained expression of Prox1 is indispensable for the maintenance of lymphatic cell fate even at adult stages, highlighting the unique importance of this gene for the lymphatic lineage. Whether this pre-eminent role of Prox1 within the lymphatic vasculature is conserved in other vertebrate classes has remained unresolved, mainly owing to the lack of availability of loss-of-function mutants. Here, we re-examine the role of Prox1a in zebrafish lymphangiogenesis. First, using a transgenic reporter line, we show that prox1a is initially expressed in different endothelial compartments, becoming restricted to lymphatic endothelial cells only at later stages. Second, using targeted mutagenesis, we show that Prox1a is dispensable for lymphatic specification and subsequent lymphangiogenesis in zebrafish. In line with this result, we found that the functionally related transcription factors Coup-TFII and Sox18 are also dispensable for lymphangiogenesis. Together, these findings suggest that lymphatic commitment in zebrafish and mice is controlled in fundamentally different ways

    Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE)

    No full text
    In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hydroxyapatite, and pyrophosphate, a physiochemical inhibitor of mineralization. Here, we provide a detailed analysis of a zebrafish mutant, dragonfish (dgf), which is mutant for ectonucleoside pyrophosphatase/phosphodiesterase 1 (Enpp1), a protein that is crucial for supplying extracellular pyrophosphate. Generalized arterial calcification of infancy (GACI) is a fatal human disease, and the majority of cases are thought to be caused by mutations in ENPP1. Furthermore, some cases of pseudoxanthoma elasticum (PXE) have recently been linked to ENPP1. Similar to humans, we show here that zebrafish enpp1 mutants can develop ectopic calcifications in a variety of soft tissues - most notably in the skin, cartilage elements, the heart, intracranial space and the notochord sheet. Using transgenic reporter lines, we demonstrate that ectopic mineralizations in these tissues occur independently of the expression of typical osteoblast or cartilage markers. Intriguingly, we detect cells expressing the osteoclast markers Trap and CathepsinK at sites of ectopic calcification at time points when osteoclasts are not yet present in wild-type siblings. Treatment with the bisphosphonate etidronate rescues aspects of the dgf phenotype, and we detected deregulated expression of genes that are involved in phosphate homeostasis and mineralization, such as fgf23, npt2a, entpd5 and spp1 (also known as osteopontin). Employing a UAS-GalFF approach, we show that forced expression of enpp1 in blood vessels or the floorplate of mutant embryos is sufficient to rescue the notochord mineralization phenotype. This indicates that enpp1 can exert its function in tissues that are remote from its site of expression

    Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis

    Get PDF
    Tcf/Lef HMG box transcription factors are nuclear effectors of the canonical Wnt signaling pathway, which function in cell fate specification. Lef1 is required for the development of tissues and organs that depend on epithelial mesenchymal interactions. Here, we report the effects of lef1 loss of function on early development in X. tropicalis. Depletion of lef1 affects gene expression already during gastrulation and results in abnormal differentiation of cells derived from ectoderm and mesoderm. At tail bud stages, the epidermis was devoid of ciliated cells and derivatives of the neural crest, e.g. melanocytes and cephalic ganglia were absent. In the Central Nervous System, nerve fibers were absent or underdeveloped. The development of the paraxial mesoderm was affected; intersomitic boundaries were not distinct and development of the hypaxial musculature was impaired. The development of the pronephros and pronephric ducts was disturbed. Most striking was the absence of blood flow in lef1 depleted embryos. Analysis of blood vessel marker genes demonstrated that lef1 is required for the development of the major blood vessels and the heart

    Functional dissection of the CCBE1 protein : A crucial requirement for the collagen repeat domain

    No full text
    Rationale: Collagen- and calcium-binding EGF domain-containing protein 1 (CCBE1) is essential for lymphangiogenesis in vertebrates and has been associated with Hennekam syndrome. Recently, CCBE1 has emerged as a crucial regulator of vascular endothelial growth factor-C (VEGFC) signaling. Objective: CCBE1 is a secreted protein characterized by 2 EGF domains and 2 collagen repeats. The functional role of the different CCBE1 protein domains is completely unknown. Here, we analyzed the functional role of the different CCBE1 domains in vivo and in vitro. Methods and Results: We analyzed the functionality of several CCBE1 deletion mutants by generating knock-in mice expressing these mutants, by analyzing their ability to enhance Vegfc signaling in vivo in zebrafish, and by testing their ability to induce VEGFC processing in vitro. We found that deleting the collagen domains of CCBE1 has a much stronger effect on CCBE1 activity than deleting the EGF domains. First, although CCBE1ΔCollagen mice fully phenocopy CCBE1 knock-out mice, CCBE1ΔEGF knock-in embryos still form rudimentary lymphatics. Second, Ccbe1ΔEGF, but not Ccbe1ΔCollagen, could partially substitute for Ccbe1 to enhance Vegfc signaling in zebrafish. Third, CCBE1ΔEGF, similarly to CCBE1, but not CCBE1ΔCollagen could activate VEGFC processing in vitro. Furthermore, a Hennekam syndrome mutation within the collagen domain has a stronger effect than a Hennekam syndrome mutation within the EGF domain. Conclusions: We propose that the collagen domains of CCBE1 are crucial for the activation of VEGFC in vitro and in vivo. The EGF domains of CCBE1 are dispensable for regulation of VEGFC processing in vitro, however, they are necessary for full lymphangiogenic activity of CCBE1 in vivo

    Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis

    Get PDF
    Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis
    corecore