134 research outputs found

    Perturbative QCD Fragmentation Functions for BcB_c and BcB_c^* Production

    Full text link
    The dominant production mechanism for bˉc{\bar b} c bound states in high energy processes is the production of a high energy bˉ{\bar b} or cc quark, followed by its fragmentation into the bˉc{\bar b} c state. We calculate the fragmentation functions for the production of the S-wave states BcB_c and BcB_c^* to leading order in the QCD coupling constant. The fragmentation probabilities for bˉBc{\bar b} \rightarrow B_c and bˉBc{\bar b} \rightarrow B_c^* are approximately 2.2×1042.2 \times 10^{-4} and 3.1×1043.1 \times 10^{-4}, while those for cBcc \rightarrow B_c and cBcc \rightarrow B_c^* are smaller by almost two orders of magnitude.Comment: Latex, 12 pages, 3 figures available upon request, NUHEP-TH-93-

    B Production Asymmetries in Perturbative QCD

    Get PDF
    This paper explores a new mechanism for B production in which a b quark combines with a light parton from the hard-scattering process before hadronizing into the B hadron. This recombination mechanism can be calculated within perturbative QCD up to a few nonperturbative constants. Though suppressed at large transverse momentum by a factor Lambda_QCD m_b/p_t^2 relative to b quark fragmentation production, it can be important at large rapidities. A signature for this heavy-quark recombination mechanism in proton-antiproton colliders is the presence of rapidity asymmetries in B cross sections. Given reasonable assumptions about the size of nonperturbative parameters entering the calculation, we find that the asymmetries are only significant for rapidities larger than those currently probed by collider experiments.Comment: 17 pages, LaTeX, 4 ps figures, tightenlines, sections added, final version accepted for publication in Phys. Rev.

    Quasars and their host galaxies

    Full text link
    This review attempts to describe developments in the fields of quasar and quasar host galaxies in the past five. In this time period, the Sloan and 2dF quasar surveys have added several tens of thousands of quasars, with Sloan quasars being found to z>6. Obscured, or partially obscured quasars have begun to be found in significant numbers. Black hole mass estimates for quasars, and our confidence in them, have improved significantly, allowing a start on relating quasar properties such as radio jet power to fundamental parameters of the quasar such as black hole mass and accretion rate. Quasar host galaxy studies have allowed us to find and characterize the host galaxies of quasars to z>2. Despite these developments, many questions remain unresolved, in particular the origin of the close relationship between black hole mass and galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    The Sloan digital sky survey reverberation mapping project : technical overview

    Get PDF
    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg2 field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i psf = 21.7 mag, and covers a redshift range of 0.1 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.Publisher PDFPeer reviewe

    Laser trabeculoplasty in the exfoliation syndrome.

    Get PDF
    Inter-organizational business cooperations can be described from different viewpoints each fulfilling a specific purpose. Since all viewpoints describe the same system they must not contradict each other, thus, must be consistent. Consistency can be checked based on common semantic concepts of the different viewpoints. This is sufficient for equal concepts, while weakly related concepts, e.g. related to runtime behavior of viewpoints, have to be considered explicitly. In this paper we identify dynamic consistency issues correlated to the runtime behavior between value and coordination viewpoints on behalf of an example. In particular, an issue class on occurrence estimations of execution options and an issue class on granularity differences in modelling are identified and illustrated
    corecore