111 research outputs found

    Effects of Corn Crop Residue Grazing on Soil Physical Properties and Subsequent Soybean Production in a Corn-Soybean Crop Rotation (A Progress Report)

    Get PDF
    The highest cost to beef cow-calf producers is the feeding of stored feeds in winter months. To lower feed costs, many producers will try to extend the grazing season into the winter. The primary resource for winter grazing in the Midwest is corn crop residues. On the average, corn crop residue grazing will reduce the amount of hay needed to maintain cows by approximately one-half ton per acre grazed over the winter. Although crop residue grazing is quite effective in reducing feed costs, some producers are concerned that corn residue grazing will have an adverse effect on soybean yields the following year resulting from soil compaction. It has already been proven that the use of large machinery will cause soil compaction in wet conditions and that it reduces corn grain yields from 6 to 10%

    Winter grazing of corn residues: Effects on soil properties and subsequent crop yields from a corn-soybean crop rotation

    Get PDF
    Corn residues could be a good resource for winter cattle grazing. The study investigates whether winter grazing causes soil compaction and yield reduction in crops that are planted following grazing

    Effects of Corn Crop Residue Grazing on Soil Physical Properties and Subsequent Soybean Production in a Corn–Soybean Crop Rotation (A Progress Report)

    Get PDF
    Beginning in 1999, two locations in Iowa (Chariton, Atlantic) were used to study the effects of corn residue grazing by beef cows on soil characteristics and soybean yields the following growing season. Cows were allowed to graze inside selected paddocks at monthly periods throughout the fall and winter. For a grazed and ungrazed comparison, grazing exclosures were used inside the grazed paddocks, while one paddock was left ungrazed for a control. Also, the following year, equal portions of the fields went to no-tillage and disked soil prior to soybean planting so that effects of corn residue grazing on tillage treatments could be compared. The use of this design was to determine whether grazing had adverse effects on soil characteristics and, if so, at what date and weather conditions they occurred. Soil was analyzed for soil bulk density, moisture, penetration resistance, roughness, texture, and type. Corn crop residues were collected for yield, cover, and composition. Precipitation and soil temperature also were recorded throughout the grazing season. The following year, soybeans were harvested using a combine equipped with a yield monitor and global positioning system (GPS). After two years of study at both locations, some grazing fields with corn crop residue have shown effects on soil and crop residue characteristics. Organic matter (OM) yield of crop residue generally decreases at the faster rate in grazed fields than organic matter of ungrazed fields. However, corn crop residue composition was the same in grazed and ungrazed fields except for the 1999-2000 season at Chariton where crude protein decreased but acid detergent insoluble nitrogen (ADIN) increased with no difference in fiber content between grazed and ungrazed paddocks. Corn crop residue cover and soil roughness both can be greatly affected by the interaction of grazing and weather conditions. When the temperature is above freezing and precipitation is adequate, cattle traffic can cause roughness, while reducing residue cover by working it into the soil. Even though grazing corn residue by cattle can increase the surface roughness, it has not yet caused any increase in bulk density measurements or any reduction in soybean yields. Penetration resistance ratios have shown some significant difference between grazed and ungrazed paddocks, but the reason is unclear

    Expression of SORL1 and a novel SORL1 splice variant in normal and Alzheimers disease brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variations in sortilin-related receptor (SORL1) expression and function have been implicated in Alzheimers Disease (AD). Here, to gain insights into SORL1, we evaluated SORL1 expression and splicing as a function of AD and AD neuropathology, neural gene expression and a candidate single nucleotide polymorphism (SNP).</p> <p>Results</p> <p>To identify SORL1 splice variants, we scanned each of the 46 internal SORL1 exons in human brain RNA samples and readily found SORL1 isoforms that lack exon 2 or exon 19. Quantification in a case-control series of the more abundant isoform lacking exon 2 (delta-2-SORL1), as well as the "full-length" SORL1 (FL-SORL1) isoform containing exon 2 showed that expression of FL-SORL1 was reduced in AD individuals. Moreover, FL-SORL1 was reduced in cognitively intact individuals with significant AD-like neuropathology. In contrast, the expression of the delta-2-SORL1 isoform was similar in AD and non-AD brains. The expression of FL-SORL1 was significantly associated with synaptophysin expression while delta-2-SORL1 was modestly enriched in white matter. Lastly, FL-SORL1 expression was associated with rs661057, a SORL1 intron one SNP that has been associated with AD risk. A linear regression analysis found that rs661057, synaptophysin expression and AD neuropathology were each associated with FL-SORL1 expression.</p> <p>Conclusion</p> <p>These results confirm that FL-SORL1 expression declines in AD and with AD-associated neuropathology, suggest that FL-SORL1 declines in cognitively-intact individuals with AD-associated neuropathology, identify a novel SORL1 splice variant that is expressed similarly in AD and non-AD individuals, and provide evidence that an AD-associated SNP is associated with SORL1 expression. Overall, these results contribute to our understanding of SORL1 expression in the human brain.</p

    Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in \u3cem\u3eFrancisella tularensis\u3c/em\u3e

    Get PDF
    Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme Îł-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50

    Get PDF
    We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore