367 research outputs found

    Resting vs. active: a meta-analysis of the intra- and inter-specific associations between minimum, sustained, and maximum metabolic rates in vertebrates

    Get PDF
    Variation in aerobic capacity has far reaching consequences for the physiology, ecology, and evolution of vertebrates. Whether at rest or active, animals are constrained to operate within the energetic bounds determined by their minimum (minMR) and sustained or maximum metabolic rates (upperMR). MinMR and upperMR can differ considerably among individuals and species but are often presumed to be mechanistically linked to one another. Specifically, minMR is thought to reflect the idling cost of the machinery needed to support upperMR. However, previous analyses based on limited datasets have come to conflicting conclusions regarding the generality and strength of their association. Here we conduct the first comprehensive assessment of their relationship, based on a large number of published estimates of both the intra-specific (n = 176) and inter-specific (n = 41) phenotypic correlations between minMR and upperMR, estimated as either exercise-induced maximum metabolic rate (VO2max), cold-induced summit metabolic rate (Msum), or daily energy expenditure (DEE). Our meta-analysis shows that there is a general positive association between minMR and upperMR that is shared among vertebrate taxonomic classes. However, there was stronger evidence for intra-specific correlations between minMR and Msum and between minMR and DEE than there was for a correlation between minMR and VO2max across different taxa. As expected, inter-specific correlation estimates were consistently higher than intra-specific estimates across all traits and vertebrate classes. An interesting exception to this general trend was observed in mammals, which contrast with birds and exhibit no correlation between minMR and Msum. We speculate that this is due to the evolution and recruitment of brown fat as a thermogenic tissue, which illustrates how some species and lineages might circumvent this seemingly general association. We conclude that, in spite of some variability across taxa and traits, the contention that minMR and upperMR are positively correlated generally holds true both within and across vertebrate species. Ecological and comparative studies should therefore take into consideration the possibility that variation in any one of these traits might partly reflect correlated responses to selection on other metabolic parameters

    A microsatellite marker for yellow rust resistance in wheat

    Get PDF
    Bulk segregant analysis (BSA) was used to identify molecular markers associated with yellow rust disease resistance in wheat (Triticum aestivum L.). DNAs isolated from the selected yellow rust tolerant and susceptible F-2 individuals derived from a cross between yellow rust resistant and susceptible wheat genotypes were used to established a "tolerant" and a "susceptible" DNA pool. The BSA was then performed on these DNA pools using 230 markers that were previously mapped onto the individual wheat chromosomes. One of the SSR markers (Xgwm382) located on chromosome group 2 (A, B, D genomes) was present in the resistant parent and the resistant bulk but not in the susceptible parent and the susceptible bulk, suggesting that this marker is linked to a yellow rust resistance gene. The presence of Xgwm382 was also tested in 108 additional wheat genotypes differing in yellow rust resistance. This analysis showed that 81% of the wheat genotypes known to be yellow rust resistant had the Xgwm382 marker, further suggesting that the presence of this marker correlates with yellow rust resistance in diverse wheat germplasm. Therefore, Xgwm382 could be useful for marker assisted selection of yellow rust resistances genotypes in wheat breeding programs

    The chemical enrichment of the ICM from hydrodynamical simulations

    Get PDF
    The study of the metal enrichment of the intra-cluster and inter-galactic media (ICM and IGM) represents a direct means to reconstruct the past history of star formation, the role of feedback processes and the gas-dynamical processes which determine the evolution of the cosmic baryons. In this paper we review the approaches that have been followed so far to model the enrichment of the ICM in a cosmological context. While our presentation will be focused on the role played by hydrodynamical simulations, we will also discuss other approaches based on semi-analytical models of galaxy formation, also critically discussing pros and cons of the different methods. We will first review the concept of the model of chemical evolution to be implemented in any chemo-dynamical description. We will emphasise how the predictions of this model critically depend on the choice of the stellar initial mass function, on the stellar life-times and on the stellar yields. We will then overview the comparisons presented so far between X-ray observations of the ICM enrichment and model predictions. We will show how the most recent chemo-dynamical models are able to capture the basic features of the observed metal content of the ICM and its evolution. We will conclude by highlighting the open questions in this study and the direction of improvements for cosmological chemo-dynamical models of the next generation.Comment: 25 pages, 11 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 18; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Measuring Black Hole Spin using X-ray Reflection Spectroscopy

    Full text link
    I review the current status of X-ray reflection (a.k.a. broad iron line) based black hole spin measurements. This is a powerful technique that allows us to measure robust black hole spins across the mass range, from the stellar-mass black holes in X-ray binaries to the supermassive black holes in active galactic nuclei. After describing the basic assumptions of this approach, I lay out the detailed methodology focusing on "best practices" that have been found necessary to obtain robust results. Reflecting my own biases, this review is slanted towards a discussion of supermassive black hole (SMBH) spin in active galactic nuclei (AGN). Pulling together all of the available XMM-Newton and Suzaku results from the literature that satisfy objective quality control criteria, it is clear that a large fraction of SMBHs are rapidly-spinning, although there are tentative hints of a more slowly spinning population at high (M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of the spins of stellar-mass black holes in X-ray binaries. In general, reflection-based and continuum-fitting based spin measures are in agreement, although there remain two objects (GROJ1655-40 and 4U1543-475) for which that is not true. I end this review by discussing the exciting frontier of relativistic reverberation, particularly the discovery of broad iron line reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk reflection, this detection of reverberation demonstrates that future large-area X-ray observatories such as LOFT will make tremendous progress in studies of strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the referencing of the discovery of soft lags in 1H0707-495 (which were in fact first reported in Fabian et al. 2009

    Response of Wheat Fungal Diseases to Elevated Atmospheric CO2 Level

    Get PDF
    Infection with fungal pathogens on wheat varieties with different levels of resistance was tested at ambient (NC, 390 ppm) and elevated (EC, 750 ppm) atmospheric CO2 levels in the phytotron. EC was found to affect many aspects of the plant-pathogen interaction. Infection with most fungal diseases was usually found to be promoted by elevated CO2 level in susceptible varieties. Powdery mildew, leaf rust and stem rust produced more severe symptoms on plants of susceptible varieties, while resistant varieties were not infected even at EC. The penetration of Fusarium head blight (FHB) into the spike was delayed by EC in Mv Mambo, while it was unaffected in Mv Regiment and stimulated in Mv Emma. EC increased the propagation of FHB in Mv Mambo and Mv Emma. Enhanced resistance to the spread of Fusarium within the plant was only found in Mv Regiment, which has good resistance to penetration but poor resistance to the spread of FHB at NC. FHB infection was more severe at EC in two varieties, while the plants of Mv Regiment, which has the best field resistance at NC, did not exhibit a higher infection level at EC. The above results suggest that breeding for new resistant varieties will remain a useful means of preventing more severe infection in a future with higher atmospheric CO2 levels

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Establishment and dynamics of the balsam fir seedling bank in old forests of northeastern Quebec

    Get PDF
    This study examines balsam fir (Abies balsamea (L.) Mill.) recruitment in old fir stands. Studying the regeneration of these stands is essential to understand the regeneration dynamic of the species in the absence of standdestroying disturbances. The objectives were (1) to obtain substrate-seedling associations for different age-classes and according to the presence or absence of adventitious roots; (2) to evaluate the contribution of the seed rain to seedling recruitment; (3) to re-examine age structures using the most appropriate method that minimizes estimation errors due to the presence of adventitious roots. A total of 90 quadrats (1 m2) were established along transects. In each quadrat, subtrates were characterized (type and topography) and their area was estimated. All balsam fir seedlings (<50 cm tall) present in the quadrats were located, harvested whole (root and shoot), and described (age, height, presence of adventitious roots, etc). Fir seedlings were strongly associated with woody mounds covered with thin mats of mixed mosses and Pleurozium shreberi (Bird.) Mitt. but negatively associated with flat topography particularly dominated by Hylocomium splendens (Hedw.) B.S.G. The presence of adventitious root is related to seedling age more than substrate type or topography. The age structure is in agreement with seed production and disturbance regime

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
    corecore