129 research outputs found

    The Risks and Benefits of Genetically Modified Crops: A Multidisciplinary Perspective

    Get PDF
    Worldwide, the area planted in genetically modified (GM) crops has increased dramatically in recent years. Between 1996 and 1999, it rose from 1.6 X 106 ha to more than 35 X 106 ha (James 1998, May 1999). This rapid increase has provoked an explosion of concern, particularly in Europe, over the health and environmental impacts of these crops. Despite claims of safety and warnings against popular panic, public concern over GM crops has resulted in changes in their marketing, labeling, planting, and trade. These changes have fueled an increasingly heated debate among environmental advocates, critics of industrial agriculture, seed companies, governments, and scientists. This debate has been characterized by exaggerations of both the safety and danger of GM crops, and by attempts to suppress and avoid public discussion. This paper is the product of a discussion among an international, interdisciplinary group of scientists. Our discussion was based on the Forum articles in this issue of Conservation Ecology. These articles summarize the nature of the debate over biotechnology, describe ways to cope with potential ecological impacts of GM crops, provide insights into the cause and validity of public concern, and make suggestions on where to go from here. Our own dialogue, which was informed by these and other articles, attempts to broaden the debate and develop strategies for coping with and directing the development of biotechnology. As an interdisciplinary group, we do not try to assess the details of particular GM crops, but rather to connect the ecological, economic, and political issues that surround them. As noted by Conway (2000), Pimentel (2000), and others, the balance of evidence suggests that GM organisms have the potential to both degrade and improve the functioning of agroecosystems. Depending on which GM crops are developed and how they are used, GM crops could lead to either increases or decreases in pesticide use, the enhancement or degradation of the ecological services provided by agroecosystems, or the loss or conservation of biodiversity. However, as Conway argues, the current character of GM crop development provides cause for concern

    European scenarios for future biological invasions

    Get PDF
    1. Invasive alien species are one of the major threats to global biodiversity, ecosystem integrity, nature's contributions to people and human health. While scenarios about potential future developments have been available for other global change drivers for quite some time, we largely lack an understanding of how biological invasions might unfold in the future across spatial scales. 2. Based on previous work on global invasion scenarios, we developed a workflow to downscale global scenarios to a regional and policy-relevant context. We applied this workflow at the European scale to create four European scenarios of biological invasions until 2050 that consider different environmental, socio-economic and socio-cultural trajectories, namely the European Alien Species Narratives (Eur-ASNs). 3. We compared the Eur-ASNs with their previously published global counterparts (Global-ASNs), assessing changes in 26 scenario variables. This assessment showed a high consistency between global and European scenarios in the logic and assumptions of the scenario variables. However, several discrepancies in scenario variable trends were detected that could be attributed to scale differences. This suggests that the workflow is able to capture scale-dependent differences across scenarios. 4. We also compared the Global- and Eur-ASNs with the widely used Global and European Shared Socioeconomic Pathways (SSPs), a set of scenarios developed in the context of climate change to capture different future socio-economic trends. Our comparison showed considerable divergences in the scenario space occupied by the different scenarios, with overall larger differences between the ASNs and SSPs than across scales (global vs. European) within the scenario initiatives. 5. Given the differences between the ASNs and SSPs, it seems that the SSPs do not adequately capture the scenario space relevant to understanding the complex future of biological invasions. This underlines the importance of developing independent but complementary scenarios focussed on biological invasions. The downscaling workflow we implemented and presented here provides a tool to develop such scenarios across different regions and contexts. This is a major step towards an improved understanding of all major drivers of global change, including biological invasions

    Community-Based Climate Change Adaptation Action Plans to Support Climate-Resilient Development in the Eastern African Highlands

    Get PDF
    Smallholder farmers in the Eastern African Highlands depend on rain-fed agriculture for their livelihoods. Climate adaptation and sustainable development goals must be targeted in an integrated way to better match farmers’ realities and address local priorities and vulnerabilities in these areas. To support climate-resilient development in the Eastern African Highlands, 224 local stakeholders were engaged in the development of community-based climate change adaptation action plans for the Jimma Highlands in Ethiopia, Taita Hills in Kenya and Mount Kilimanjaro in Tanzania. Participatory methods, high-resolution climate projections and the United Nations Development Programme’s (UNDP’s) guidelines were used in the design of these climate action plans with specific objectives to: 1) engage stakeholders to increase understanding of climate change impacts, adaptation options and their potential trade-offs, 2) build their capacities to design climate change adaptation projects, 3) empower stakeholders to identify existing vulnerabilities and enhance climate resilience and 4) strengthen networks to facilitate information access and sharing. Increased risk of water stress and reduction of agricultural productivity were the most frequently identified climate-change-induced problems in the three areas. The developed action plans target the underlying causes of these problems and describe sector-specific responses, activities, critical barriers and opportunities and support the National Adaptation Programmes of Action.Peer reviewe

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    Research priorities for the sustainability of coral-rich western Pacific seascapes

    Get PDF
    Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 (‘Life below Water’) of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia–Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds

    Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19

    Get PDF
    The biological determinants of the wide spectrum of COVID-19 clinical manifestations are not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune features comprising cell phenotype, basal signaling activity, and signaling responses to inflammatory ligands were assessed in peripheral blood from patients with mild, moderate, and severe COVID-19, at the time of diagnosis. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identified and independently validated a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-19 related observations of immune perturbations, and revealed novel biological signatures of severity, including the mobilization of elements of the renin-angiotensin system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, and NF-κB immune signaling networks. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-19 progression
    • …
    corecore