972 research outputs found

    Graduate Recital Report

    Get PDF
    This project arose out of a need by the author to increase his personal expertise in the area of performance of solo vocal literature. As a current music educator, the author has determined that music preparation and performance are activities which take a large portion of his involved time within the context of music instruction. As a result, preparation and performance are of paramount importance for the teacher of music to understand and convey to his students based on personal experience. The project also provides the author/presenter with the opportunity to demonstrate his acquired skills in the area of musical performance. A final consideration for selecting a recital as a project was to enhance future educational, professional, and performing opportunities for the author/presenter. As a means of achieving the desired development of content expertise in the area of music rehearsal and performance, the choice of a recital was made after consultation with the author\u27s major professor. It was determined that a suitable format for a recital includes the selection of a unifying theme such as a particular historical or stylistic period. In this case, music of the Baroque was selected because of its accepted artistic and aesthetic merit as well as its technical challenge to the presenter in terms of performance difficulty. Barogque literature (music) for bass/baritone was selected to match the author\u27s voice type. It is hoped that as a result of presenting the recital and report document the presenter will have gained an increased awareness of the specific music to be performed in terms of how and why the music was originally written and performed and be able to demonstrate this increased awareness through a stylistically correct performance. Brief lecture segments interspersed throughout the recital serve as an additional means to demonstrate, in verbal form, the increased awareness and expertise in the area of Baroque vocal music which has been acquired

    Non-invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis patients.

    Get PDF
    BACKGROUND: Developing novel therapeutic agents to treat amyotrophic lateral sclerosis (ALS) has been difficult due to multifactorial pathophysiologic processes at work. Intrathecal drug administration shows promise due to close proximity of cerebrospinal fluid (CSF) to affected tissues. Development of effective intrathecal pharmaceuticals will rely on accurate models of how drugs are dispersed in the CSF. Therefore, a method to quantify these dynamics and a characterization of differences across disease states is needed. METHODS: Complete intrathecal 3D CSF geometry and CSF flow velocities at six axial locations in the spinal canal were collected by T2-weighted and phase-contrast MRI, respectively. Scans were completed for eight people with ALS and ten healthy controls. Manual segmentation of the spinal subarachnoid space was performed and coupled with an interpolated model of CSF flow within the spinal canal. Geometric and hydrodynamic parameters were then generated at 1 mm slice intervals along the entire spine. Temporal analysis of the waveform spectral content and feature points was also completed. RESULTS: Comparison of ALS and control groups revealed a reduction in CSF flow magnitude and increased flow propagation velocities in the ALS cohort. Other differences in spectral harmonic content and geometric comparisons may support an overall decrease in intrathecal compliance in the ALS group. Notably, there was a high degree of variability between cases, with one ALS patient displaying nearly zero CSF flow along the entire spinal canal. CONCLUSION: While our sample size limits statistical confidence about the differences observed in this study, it was possible to measure and quantify inter-individual and cohort variability in a non-invasive manner. Our study also shows the potential for MRI based measurements of CSF geometry and flow to provide information about the hydrodynamic environment of the spinal subarachnoid space. These dynamics may be studied further to understand the behavior of CSF solute transport in healthy and diseased states

    Improved reference genome for the domestic horse increases assembly contiguity and composition

    Get PDF
    Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33 Gb in EquCab2 to 2.41 Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5 Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold

    North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs

    Get PDF
    This study evaluates the fidelity of North American monsoon and associated intraseasonal variability in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs). Twenty years of monthly precipitation data from each of the 22 models' twentieth-century climate simulations, together with the available daily precipitation data from 12 of them, are analyzed and compared with Global Precipitation Climatology Project (GPCP) monthly and daily precipitation. The authors focus on the seasonal cycle and horizontal pattern of monsoon precipitation in conjunction with the two dominant convectively coupled equatorial wave modes: the eastward-propagating Madden-Julian oscillation (MJO) and the westward-propagating easterly waves. The results show that the IPCC AR4 CGCMs have significant problems and display a wide range of skill in simulating the North American monsoon and associated intraseasonal variability. Most of the models reproduce the monsoon rainbelt, extending from southeast to northwest, and its gradual northward shift in early summer, but overestimate the precipitation over the core monsoon region throughout the seasonal cycle and fail to reproduce the monsoon retreat in the fall. Additionally, most models simulate good westward propagation of the easterly waves, but relatively poor eastward propagation of the MJO and overly weak variances for both the easterly waves and the MJO. There is a tendency for models without undiluted updrafts in their deep convection scheme to produce better MJO propagation.open221

    A Stress Induced Source of Phonon Bursts and Quasiparticle Poisoning

    Full text link
    The performance of superconducting qubits is degraded by a poorly characterized set of energy sources breaking the Cooper pairs responsible for superconductivity, creating a condition often called "quasiparticle poisoning." Recently, a superconductor with one of the lowest average quasiparticle densities ever measured exhibited quasiparticles primarily produced in bursts which decreased in rate with time after cooldown. Similarly, several cryogenic calorimeters used to search for dark matter have also observed an unknown source of low-energy phonon bursts that decrease in rate with time after cooldown. Here, we show that a silicon crystal glued to its holder exhibits a rate of low-energy phonon events that is more than two orders of magnitude larger than in a functionally identical crystal suspended from its holder in a low-stress state. The excess phonon event rate in the glued crystal decreases with time since cooldown, consistent with a source of phonon bursts which contributes to quasiparticle poisoning in quantum circuits and the low-energy events observed in cryogenic calorimeters. We argue that relaxation of thermally induced stress between the glue and crystal is the source of these events, and conclude that stress relaxation contributes to quasiparticle poisoning in superconducting qubits and the athermal phonon background in a broad class of rare-event searches.Comment: 13 pages, 6 figures. W. A. Page and R. K. Romani contributed equally to this work. Correspondence should be addressed to R. K. Roman
    corecore