1,397 research outputs found

    Low Energy Recoil Simulations in MgO, LiNbO3, and LiTaO3 Using \u3ci\u3eAb Initio\u3c/i\u3e Molecular Dynamics

    Get PDF
    Ab initio molecular dynamics (AIMD) was utilized to test a series of materials, MgO, LiNbO3 , and LiTaO3 , to determine defect structures produced due to low energy recoil events . The kinetic energy required to displace an atom from its lattice site, the threshold displacement energy, was calculated for an array of directions in each material, based on symmetry and complexity of the structure. MgO having a simple rock salt structure provided a model material for demonstrating computational techniques used later on LiTaO3 and LiNbO3 . The minimum values for displacing an atom were at 25.5 eV for O and 29.5 eV for Mg. For LiNbO3 and LiTaO3, the minimum energy for displacing an atom was 6 eV for Li in LiTaO3 and 14 eV for Li in LiNbO3 . Average values for threshold displacement energies agreed well with those used in calculations, but they have not yet been accurately measured experimentally. Additionally, the defect structures and properties were identified and reported as a result of the simulations. The high defect formation energy reported for cation vacancies means that they are unstable in the structure and will either recombine, form defect complexes, or migrate to defect sinks in the material

    Mobility Cart for Monoskiers

    Get PDF
    This document represents the culmination of the senior design project of Team Monoski M.E. This project was in partnership with Disabled Sports Eastern Sierra (DSES), a volunteer-based, non-profit organization focused on providing people with disabilities opportunities to participate in outdoor activities. Our team was tasked with designing a device to help monoskiers at Mammoth Mountain load on and off the gondola with little to no assistance. Over the course of three quarters at Cal Poly, we designed, manufactured, and tested our mobility cart, consisting of a custom-made wheelchair with an integrated hydraulic lift

    Sharp estimates on the first eigenvalue of the p-Laplacian with negative Ricci lower bound

    Full text link
    We complete the picture of sharp eigenvalue estimates for the p-Laplacian on a compact manifold by providing sharp estimates on the first nonzero eigenvalue of the nonlinear operator Δp\Delta_p when the Ricci curvature is bounded from below by a negative constant. We assume that the boundary of the manifold is convex, and put Neumann boundary conditions on it. The proof is based on a refined gradient comparison technique and a careful analysis of the underlying model spaces.Comment: Sign mistake fixed in the proof of the gradient comparison theorem (theorem 5.1 pag 10), and some minor improvements aroun

    Soy protein ingestion results in less prolonged p70S6 kinase phosphorylation compared to whey protein after resistance exercise in older men

    Get PDF
    Background The phosphorylation of p70S6 Kinase (p70S6K) is an important step in the initiation of protein translation. p70S6K phosphorylation is enhanced with graded intakes of whey protein after resistance exercise. Soy protein ingestion results in lower muscle protein synthesis after exercise compared with whey; however, the underlying mechanisms responsible for this difference have not been reported. Findings 13 older men (60–75) completed an acute bout of lower body resistance exercise and ingested 30 g of soy protein or carbohydrate. Muscle biopsies were obtained in the rested and fasted state and 2 and 4 hours post exercise. Phosphorylation status of p70S6K was measured with western blot. Results were compared with previously reported data from the ingestion of 30 g of whey protein or placebo. p70S6K phosphorylation was increased 2, but not 4 hours post exercise with soy protein ingestion. p70S6K phosphorylation was not increased post exercise with carbohydrate ingestion. Conclusions Ingesting 30 g of either whey or soy protein resulted in equivalent p70S6K phosphorylation at 2 hours post exercise, however, unlike whey, soy protein failed to promote prolonged phosphorylation of p70S6K to 4 hours post-exercise

    Heavy resistance training in hypoxia enhances 1RM squat performance

    Get PDF
    Purpose: To determine if heavy resistance training in hypoxia (IHRT) is more effective at improving strength, power, and increasing lean mass than the same training in normoxia. Methods: A pair-matched, placebo-controlled study design included 20 resistance-trained participants assigned to IHRT (FIO2 0.143) or placebo (FIO2 0.20), (n = 10 per group). Participants were matched for strength and training. Both groups performed 20 sessions over 7 weeks either with IHRT or placebo. All participants were tested for 1RM, 20-m sprint, body composition, and countermovement jump pre-, mid-, and post-training and compared via magnitude-based inferences. Presentation of Results: Groups were not clearly different for any test at baseline. Training improved both absolute (IHRT: 13.1 ± 3.9%, effect size (ES) 0.60, placebo 9.8 ± 4.7%, ES 0.31) and relative 1RM (IHRT: 13.4 ± 5.1%, ES 0.76, placebo 9.7 ± 5.3%, ES 0.48) at mid. Similarly, at post both groups increased absolute (IHRT: 20.7 ± 7.6%, ES 0.74, placebo 14.1 ± 6.0%, ES 0.58) and relative 1RM (IHRT: 21.6 ± 8.5%, ES 1.08, placebo 13.2 ± 6.4%, ES 0.78). Importantly, the change in IHRT was greater than placebo at mid for both absolute [4.4% greater change, 90% Confidence Interval (CI) 1.0:8.0%, ES 0.21, and relative strength (5.6% greater change, 90% CI 1.0:9.4%, ES 0.31 (relative)]. There was also a greater change for IHRT at post for both absolute (7.0% greater change, 90% CI 1.3:13%, ES 0.33), and relative 1RM (9.2% greater change, 90% CI 1.6:14.9%, ES 0.49). Only IHRT increased countermovement jump peak power at Post (4.9%, ES 0.35), however the difference between IHRT and placebo was unclear (2.7, 90% CI –2.0:7.6%, ES 0.20) with no clear differences in speed or body composition throughout. Conclusion: Heavy resistance training in hypoxia is more effective than placebo for improving absolute and relative strength

    Post-exercise cold water immersion effects on physiological adaptations to resistance training and the underlying mechanisms in skeletal muscle: a narrative review

    Get PDF
    Post-exercise cold-water immersion (CWI) is a popular recovery modality aimed at minimizing fatigue and hastening recovery following exercise. In this regard, CWI has been shown to be beneficial for accelerating post-exercise recovery of various parameters including muscle strength, muscle soreness, inflammation, muscle damage, and perceptions of fatigue. Improved recovery following an exercise session facilitated by CWI is thought to enhance the quality and training load of subsequent training sessions, thereby providing a greater training stimulus for long-term physiological adaptations. However, studies investigating the long-term effects of repeated post-exercise CWI instead suggest CWI may attenuate physiological adaptations to exercise training in a mode-specific manner. Specifically, there is evidence post-exercise CWI can attenuate improvements in physiological adaptations to resistance training, including aspects of maximal strength, power, and skeletal muscle hypertrophy, without negatively influencing endurance training adaptations. Several studies have investigated the effects of CWI on the molecular responses to resistance exercise in an attempt to identify the mechanisms by which CWI attenuates physiological adaptations to resistance training. Although evidence is limited, it appears that CWI attenuates the activation of anabolic signaling pathways and the increase in muscle protein synthesis following acute and chronic resistance exercise, which may mediate the negative effects of CWI on long-term resistance training adaptations. There are, however, a number of methodological factors that must be considered when interpreting evidence for the effects of post-exercise CWI on physiological adaptations to resistance training and the potential underlying mechanisms. This review outlines and critiques the available evidence on the effects of CWI on long-term resistance training adaptations and the underlying molecular mechanisms in skeletal muscle, and suggests potential directions for future research to further elucidate the effects of CWI on resistance training adaptations

    Operationalizing resilience for conservation objectives: the 4S’s

    Get PDF
    Although resilience thinking is increasingly popular and attractive among restoration practitioners, it carries an abstract quality that hinders effective application. Because resilience and its components are defined differently in social and ecological contexts, individual managers or stakeholders may disagree on the definition of a system’s state, occurrence of a state change, preferred state characteristics, and appropriate methods to achieve success. Nevertheless, incentives and mandates often force managers to demonstrate how their work enhances resilience. Unclear or conflicting definitions can lead to ineffective or even detrimental decision-making in the name of resilience; essentially, any convenient action can be touted as resilience-enhancing in this case. We contend that any successful resilience management project must clearly identify up-front the stressors of concern, state traits, scales of appropriate management, and success indicators (the 4S’s) relevant to the management targets. We propose a deliberate process for determining these components in advance of resilience management for conservation. Our recommendations were inspired and informed by two case studies wherein different definitions of stressors, state, scales, and success would result in very different management choices, with potentially serious consequences for biodiversity targets

    The effects of knee injury on skeletal muscle function, Na+, K+-ATPase content, and isoform abundance.

    Get PDF
    While training upregulates skeletal muscle Na+, K+‐ATPase (NKA), the effects of knee injury and associated disuse on muscle NKA remain unknown. This was therefore investigated in six healthy young adults with a torn anterior cruciate ligament, (KI; four females, two males; age 25.0 ± 4.9 years; injury duration 15 ± 17 weeks; mean ± SD) and seven age‐ and BMI‐matched asymptomatic controls (CON; five females, two males). Each participant underwent a vastus lateralis muscle biopsy, on both legs in KI and one leg in CON. Muscle was analyzed for muscle fiber type and cross‐sectional area (CSA), NKA content ([3H]ouabain binding), and α1–3 and ÎČ1–2 isoform abundance. Participants also completed physical activity and knee function questionnaires (KI only); and underwent quadriceps peak isometric strength, thigh CSA and postural sway assessments in both injured and noninjured legs. NKA content was 20.1% lower in the knee‐injured leg than the noninjured leg and 22.5% lower than CON. NKA α2 abundance was 63.0% lower in the knee‐injured leg than the noninjured leg, with no differences in other NKA isoforms. Isometric strength and thigh CSA were 21.7% and 7.1% lower in the injured leg than the noninjured leg, respectively. In KI, postural sway did not differ between legs, but for two‐legged standing was 43% higher than CON. Hence, muscle NKA content and α2 abundance were reduced in severe knee injury, which may contribute to impaired muscle function. Restoration of muscle NKA may be important in rehabilitation of muscle function after knee and other lower limb injury

    Biomarkers of aging associated with past treatments in breast cancer survivors.

    Get PDF
    Radiation and chemotherapy are effective treatments for cancer, but are also toxic to healthy cells. Little is known about whether prior exposure to these treatments is related to markers of cellular aging years later in breast cancer survivors. We examined whether past exposure to chemotherapy and/or radiation treatment was associated with DNA damage, telomerase activity, and telomere length 3-6 years after completion of primary treatments in breast cancer survivors (stage 0-IIIA breast cancer at diagnosis). We also examined the relationship of these cellular aging markers with plasma levels of Interleukin (IL)-6, soluble TNF-receptor-II (sTNF-RII), and C-reactive protein (CRP). Ninety-four women (36.4-69.5 years; 80% white) were evaluated. Analyses adjusting for age, race, BMI, and years from last treatment found that women who had prior exposure to chemotherapy and/or radiation compared to women who had previously received surgery alone were more likely to have higher levels of DNA damage (P = .02) and lower telomerase activity (P = .02), but did not have differences in telomere length. More DNA damage and lower telomerase were each associated with higher levels of sTNF-RII (P's < .05). We found that exposure to chemotherapy and/or radiation 3-6 years prior was associated with markers of cellular aging, including higher DNA damage and lower telomerase activity, in post-treatment breast cancer survivors. Furthermore, these measures were associated with elevated inflammatory activation, as indexed by sTNF-RII. Given that these differences were observed many years after the treatment, the findings suggest a long lasting effect of chemotherapy and/or radiation exposure

    Prescribed fluid consumption and its effects on the physiology and work behaviour of Australian wildland firefighters

    Full text link
    The present study examined firefighters\u27 ability to consume a prescribed fluid volume (1200 ml &middot; h-1) during a wildland fire suppression shift and compare the effect of this additional fluid prescription with self-paced drinking on firefighters\u27 hydration status and plasma sodium concentration post shift and their heart rate, core temperature and physical activity during their shift. Thirty-four firefighters were evenly divided into two drinking groups: self paced and prescribed. Prescribed drinkers did not meet the required 1200 ml&middot;h-1 intake, yet they consumed twice the fluid drank by the self-paced group. No differences were noted between groups in plasma sodium levels or hydration status before or after their shift. Prescribed fluid consumption resulted in significantly lower core temperature between two and six hours into the shift. This did not coincide with lower cardiovascular strain, greater physical activity when compared to the self-paced drinking group. Additional fluid consumption (above self-paced intake) did not improve firefighter activity or physiological function (though it may buffer rising core temperature). It seems that wildland firefighters, at least in mild to warm weather conditions, can self-regulate their fluid consumption and work behaviour to leave the fireground hydrated at the conclusion of their shift.<br /
    • 

    corecore