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Abstract

Ab initio molecular dynamics (AIMD) was utilized to test a series of materials, MgO, LiNbO3 ,

and LiTaO3 , to determine defect structures produced due to low energy recoil events . The kinetic

energy required to displace an atom from its lattice site, the threshold displacement energy, was

calculated for an array of directions in each material, based on symmetry and complexity of the

structure. MgO having a simple rock salt structure provided a model material for demonstrating

computational techniques used later on LiTaO3 and LiNbO3 . The minimum values for displacing

an atom were at 25.5 eV for O and 29.5 eV for Mg. For LiNbO3 and LiTaO3 , the minimum energy

for displacing an atom was 6 eV for Li in LiTaO3 and 14 eV for Li in LiNbO3 . Average values for

threshold displacement energies agreed well with those used in calculations, but they have not yet

been accurately measured experimentally. Additionally, the defect structures and properties were

identified and reported as a result of the simulations. The high defect formation energy reported

for cation vacancies means that they are unstable in the structure and will either recombine, form

defect complexes, or migrate to defect sinks in the material.
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Chapter 1

Introduction

1.1 Purpose

Exploring radiation damage in materials, especially at small scales where primary damage events

happen is very challenging. The focus of this research is to utilizemodern computational techniques

frommolecular dynamics and density functional theory to determine the defect properties in various

oxide materials as produced through irradiation. The creation of point defects during radiation

damage happens incredibly quickly (on the order of 10-13s) such that gathering information on

these defects via experimental observation is difficult if not impossible. Therefore, with the tools

available to us currently, the only way to gather information about these processes is by simulating

these events. Simple oxides like MgO fare well when performing simulations due to their simple

ionic and electronic structures. More complex ternary oxides can be more difficult to simulation

utilizing classical techniques. Ternary oxides like LiNbO3 and LiTaO3 for example are poorly

suited to study by classical molecular dynamics so to properly study them, we need to use more

computationally intensive methods like density functional theory in combination with molecular

dynamics. When combining these tools on short time scales, it is then possible to analyze the

radiation response of a material at very small length scales. The work presented here is intended to

bridge the gap between current experimental observations and reported results from prior density

functional theory based calculations.
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The dynamic nature of the calculations to be performed require extra care due to any number

of limitations imposed by the computational methodologies currently employed, which will be

discussed and considered. Modern standards in computational materials science require rigorous

testing of the simulation parameters before proper simulations can commence which will also be

explored. Before any simulation takes place, an understanding of the radiation damage event

is required to explain the reasoning behind simulation decisions. Then a sampling of material

properties is required to ensure accurate representation of the physics involved. After all of these

properties have been verified and the simulation parameters tested, then finally simulations relating

to the radiation damage event can begin. Finally, after all defect structures are cataloged, the

properties of the defects can be calculated and conclusions can be drawn regarding the material

response under irradiation.

1.2 Radiation damage

1.2.1 Introduction to radiation damage

When an energetic particles, be it an ion, electron, neutron, photon, or any other atomic or

subatomic particles, interact with a material, there are several steps that can describe the various

time and interaction scales throughout the course of the event. Gary S. Was [8] describes the

radiation damage event in six basic steps, illustrated in figure 1.1.

1. Interaction of an energetic incident particle with a lattice atom (figure 1.1a)

2. Transfer of kinetic energy to the lattice atom which creates a primary knock-on atom (PKA)

(figure 1.1b)

3. Displacement of the PKA from its lattice site (figure 1.1c)

4. Passage of the displaced atom through the lattice and subsequent creation of additional

knock-on atoms (figure 1.1d)

2



5. Production of a displacement cascade (a collection of point defects produced by the PKA)

(figure 1.1e)

6. Termination of the PKA in the lattice (as either an interstitial, replacement, or at a sink for

defects) (figure 1.1f)

R = N

∫ Emax

Emin

∫ Tmax

Tmin

ϕ(Ei)σ(Ei, T )ν(T )dTdEi (1.1)

Radiation damage is described by equation 1.1 [8] where R is the number of displacements

per unit volume, N is the atom number density, Emin and Emax are the minimum and maximum

energy of particle, Tmin and Tmax are the minimum and maximum energy transferred in a collision

of a particle energy Ei and lattice atom, σ(Ei, T ) is the cross section for the collision resulting in

transfer of energy T , and finally ν(T ) is the number of displacements per PKA. Determining the

value of ν(T ) can be done with several models, like the Kinchin-Pease model. This model requires

knowledge of the minimum value of kinetic energy required to displace an atom from its initial

lattice site and produce a Frenkel pair [9]. This value is known as the threshold displacement energy

or Ed . Codes that estimate radiation damage, like TRIM (Transmission of Ions in Matter)[10]

require Ed as an input parameter when estimating damage as well.

As the atom progresses through the lattice, it will lose energy to the electrons of the system

(electronic energy loss) and through collisions with nuclei in the system (nuclear energy loss). At

higher energies, the incident particle will lose energy mostly due to electronic effects. After it loses

enough energy however, it will begin to interact with the nuclei of the target system. These nuclear

collisions are where the threshold displacement energy plays an important role in estimating the

damage, depth, and distribution of defects in a material under irradiation.

Being as the threshold displacement events occur at the very minimum energy required for

displacing an atom, it is key to understanding which defects are produced at the end of the cascade.

Codes and models estimate damage based on Ed , but the actual type of defects that occur in the

material can affect the structural evolution of the material[8]. Some types of defects will not be

easy to detect (replacements, some types of antisite defects) while others like dislocation loops,

3



color centers produced from vacancies, bubbles and voids are easier to detect. Some effects of

radiation damage are even visible to the naked eye like color changes due to defects produced.

1.2.2 Energetic particle interaction with solid matter

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Schematic representation of the steps in a radiation damage event. Lattice atoms are
orange, the incident particle is green, the PKA is pink, additional knock on atoms are purple and
the vacancies are shown in blue.

From figure 1.2, the shortest time scale interactions in radiation damage are related to the

primary damage production. This is the portion of radiation damage described in figure 1.1. Beyond

this time and length scale, larger more easily observed reactions happen like defect mobility, void

and bubble formation, and recombination. The mobility of defects also allows for the production of

larger defects like dislocation loops. Large defects in the structure begin to affect the macroscopic

properties like mechanical properties. Dislocations and point defects further affect the motion of

dislocations in thematerial affecting how thematerial can deform. Swelling (due to void and bubble

formation in addition to dislocation and point defect production) also affects how the mechanical

properties change, especially if the material is required to be a certain size and shape.

4



ps ns µs ms s hours years

nm

µm

mm

m

BCA

classical MD

DFT

finite element; rate equations

discrete dislocation dynamics

kinetic Monte Carlo

ps ns µs ms s hours years

nm

µm

mm

m

primary damage
(cascades)

dislocation mobility and reactions

sputtering; bubble formation; point defect mobility;
recombination

swelling

macroscopic mechanical properties

Figure 1.2: Various time and length domains for multiscale materials science modeling in relation
to radiation damage affects taken from Freyss [1] and modified slightly (increased the length of
BCA (binary collision approximation) region).

As a compliment to experimental observations, simulations can fill in the gaps of observable

events with finer time and resolution scales. Figure 1.2 on the lower portion shows the overlap and

differences between the various techniques used to simulate materials under irradiation. Especially

at the fine time and length scales there are a variety of tools available. Some of these tools

require additional knowledge. For instance, classical molecular dynamics requires a well defined

function or potential to represent atomic interactions. The interactions can be quite complex and the

equations to represent these events can fail to provide a complete picture of what is happening in the

material. Things like charge transfer, evolving oxidation states, and multiple component systems

all require consideration for accurate simulations. When there are too many of these interactions

and terms to consider, many of the models for classical MD potentials cannot predict properties of

their representative systems.

A one component system, a pure copper crystal for example, is one of the first materials

simulated under irradiation[11]. There was only one term really required to describe the interaction

between atoms– a Cu-Cu interaction term. When two component systems exist, there are three

terms at minimum required to describe the behavior. For instance, in MgO, there is an Mg-Mg

term, an O-O term, and an Mg-O term required. For a three component oxide, like LiNbO3 , there

would be at minimum six components to the potential– Li-Li, Li-Nb, Li-O, Nb-Nb, Nb-O, and

O-O. This neglects other oxidation states (like Nb can have in oxide materials) and other longer
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range interactions. A four component system is yet again more complex.

1.3 Material selection

When selecting materials for analysis, especially for relatively new techniques, it is advantageous

to select a material that is well studied and simple to analyze. If looking at materials purely from

their ease of simulation, then a very good candidate material would be MgO since it is used as a

standard reference material for several density functional theory (DFT) codes. In addition to being

well studied with DFT it has had well developed classical MD potentials for running simulations.

Additionally, the MD potentials for MgO are simple compared to more complex oxides since they

typically only need to describe three interactions– Mg-Mg, O-O, and Mg-O [12]. When more

components are added to the system, mutli-component interactions become much more complex.

To further add to the difficulty in simulation, charge must be considered. MgO potentials just

consider one charge state for Mg and one charge state for O. The simulations become more difficult

once more charge states can be considered.

After verifying procedures and methodology produce believable results, more challenging

materials can be selected. In this case, two ABO3 oxides are of particular interest due to their

properties under irradiation and lack of classical MD potentials that can simulate these conditions.

In particular, the heavy cations in LiNbO3 and LiTaO3 can exist in multiple charge states. At ground

state in those materials, the cations exist at a +5 charge state, but they can exist at +4, +3, and +2 in

LiNbO3 or LiTaO3 defects in addition to other materials[13, 14]. Unless a potential can take into

account the local geometry and the effects on the charge state of the atom, classical MD can fail to

predict the behavior of defect structures.

LiNbO3 and LiTaO3 exhibit desirable properties for use in optical applications, but their main

drawback is that they become damaged under intense optical radiation and lose their properties that

make them useful[15, 16]. One of the main ways to stabilize the damage is with the inclusion ofMg
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in the form ofMgO. All three of the materials presented here, LiTaO3 , LiNbO3 , andMgO therefore

are useful in the same application– wave guides and radiation resistance in those materials.

1.3.1 MgO

Figure 1.3: Cubic MgO unit cell. O atoms are red; Mg are green (all colors in atomic models in
this work are taken from their colors in Jmol[2])

Figure 1.3 shows the unit cell for MgO. It has the rocksalt crystal structure (space group Fm3̄m,

no. 225) which consists of two interpenetrating FCC lattices of Mg and O ions. It is usually

a white, odorless powder (clear single crystals are available) with a high melting point (2852◦C

) and is chemically inert. Historically, MgO was known as magnesia alba (white mineral from

magnesia). Due to its simple crystal structure, MgO has long been used as a material for testing

both experimental techniques and theoretical models. It has beenwidely used as a substratematerial

for studying the vibrational properties of crystals due to its stability.

Perhaps its most common use currently is as a refractory material since it has a high melting

point and is chemically stable at high temperatures. Additionally, it has a high thermal and low

electrical conductivity making it very widely used in refractory applications as well as fireproofing.

One of the other primary uses for MgO is in areas where it acts as an acid buffer and stabilizer for

dissolved heavy metals. Most metals are more soluble in water at low or high pH. Solubility in
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turn affects the bioavailability of the dissolved metals as well as their mobility through soil and

groundwater systems. MgO is often used when it is imperative to ensure heavy metals do not enter

these systems since it can both change the acidity and precipitate dissolved heavy metals.

One of the many uses of MgO is as a material for packing around and stabilizing nuclear waste

products. For instance, at the Waste Isolation Pilot Plant, where radioactive waste and materials

are stored for long term isolation, MgO is the preferred material for packing around containers.

Dissolved heavy metals will be stabilized in MgO thus preventing contamination of ground water

with radioactive material should any escape containment over their long decay process. The low

chemical activity, resistance to radiation damage, and low cost make it an ideal material for long

term waste storage[17].

In addition to storing and protecting nuclear waste, MgO has also been investigated as a matrix

for inert matrix nuclear fuels and as a matrix for the transmutation of fission byproducts[17].

Understanding the radiation response of MgO has been researched since the 1950’s. The process

by which point defects form is integral to the current knowledge of behavior of the material in

radioactive environments, which is the focus of current research.

1.3.2 LiNbO3 and LiTaO3

LiNbO3 and LiTaO3 have a combination of desirable qualities (ferroelectric, piezoelectric, photoe-

lasticity, and nonlinear optical polarizability) that arise from their crystal structure. They are both

in the trigonal crystal system (R3c) that lacks inversion symmetry compared to the similar ilmenite

crystal structure of higher temperature LiNbO3 . As shown in figure 1.4, the unit conventional unit

cell for LiNbO3 (LiTaO3 has the same structure) contains alternating layers of anions and cations.

There has been a great deal of interest in the higher temperature structure of the material as it has

higher symmetry[14, 18, 19], but that is not the focus of this work.

The theoretical and measured lattice parameters of both LiNbO3 and LiTaO3 are nearly

identical; the only major difference in the two structures is with the weight of the second cation in
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Figure 1.4: Hexagonal LiNbO3 unit cell. O atoms are red; Li atoms are purple; Nb atoms are teal.
Octahedra of oxygen atoms contained within the unit cell are highlighted. Nb atoms sit at the center
of these sites.

the structure. The heavy cation in the material, Nb and Ta are in the same column on the periodic

table. They have the same valence electron configuration when in the +5 oxidation state, but at

different orbitals. Their masses however are considerably different with Nb weighing 92.906 u and

Ta weighing nearly double that at 180.948 u.

The primary interest in LiNbO3 and LiTaO3 has been for their non-linear optical properties.

They are typically used as wave guides for light. Of even more recent interest has efforts to utilize

mixtures of LiNbO3 and LiTaO3 along with dopants like MgO to prevent optical radiation from

damaging the crystals in their primary applications.

Historically, several tests have been done to analyze the low energy radiation response of both

LiNbO3 and LiTaO3 but the results proved to be inconclusive. The chosen method of analysis

in those experiments was to look at the color centers produced after irradiation and see how they
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evolved over time. There were, however, two major difficulties surrounding this. The first is that

only recently have high quality stoichiometric crystals become available and the second is that the

color centers produced by O2- vacancies obscure the signals from other defects[20]. The crystals

available at the time were riddled with intrinsic defects and oxygen vacancies are relatively easy

to form at room temperature due to the growth conditions of the crystals. Effectively, this makes

it nearly impossible to gauge the formation of cation defects in these two materials since both are

easily obscured by intrinsic defects and those produced from anion defects.

Under irradiation, LiNbO3 and LiTaO3 exhibit the formation of amorphous ion tracks[21, 22].

Partly this is due to the phase stability and growth conditions of the crystal; if the LiNbO3 phase is

not completely stoichiometric and there is an appreciable concentration of intrinsic defects, these

intrinsic defects can play a role in the amorphization of the material[20, 22].

LiNbO3 provides a good system for ion track formation and amorphization in ceramic oxide

materials. The ease with which it forms amorphous regions allows for lower energy experiments

to study these phenomena. Additionally, amorphization and ion tracks can be used as a processing

method to produce nano scale structures in the material with lower incident particle energy.

Predamage in LiNbO3 has been shown to facilitate the formation of ion tracks as well suggesting a

synergistic effect of accumulated damage in LiNbO3 .

More work has been carried out on LiNbO3 currently than on LiTaO3 because of the availability

of high quality LiNbO3 crystals. Only recently have more high quality LiTaO3 crystals become

available compared to commercially available LiNbO3 crystals. Both are grown through the

Czochralski process where seed crystal is grown to amuch larger single crystal of the samematerial.
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Chapter 2

Computational and theoretical background

2.1 Molecular dynamics

2.1.1 Historical context

Table 2.1: Timeline of the major advances in molecular dynamics and statistical mechanics

year work authors

1953 ”Equation of state calculations by fast computing machines”
[23]

Metropolis et al

1955 ”Fermi, Pasta, and Ulam Los Alamos report”[24] Fermi, Pasta, and Ulam
1956 ”Phase Transitions for a Hard Sphere System” [25] Alder and Wainwright
1960 ”Dynamics of Radiation Damage”[11] the Vineyard group
1964 ”Correlations in the Motion of Atoms in Liquid Argon”[26] Rahman
1971 ”Molecular Dynamics Study of Liquid Water”[27] Rahman and Stillinger
1972 ”NpT-ensemble Monte Carlo calculations for binary liquid

mixtures”[28]
McDonald

1980 ”Molecular dynamics simulations at constant pressure and/or
temperature”[29]

Andersen

1980 ”Crystal Structure and Pair Potentials: A Molecular-
Dynamics Study”[30]

Parrinello and Rahman

1981 ”Polymorphic transitions in single crystals: a new molecular
dynamics method”[31]

Parrinello and Rahman

1985 ”Unified approach for Molecular Dynamics and Density-
Functional Theory”[32]

Car and Parrinello
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One of the key tools developed since the 1950s for understanding atomic behavior is molecular

dynamics. MD makes several assumptions about the materials being simulated, one of them

being the hard sphere model. Early Monte Carlo methods describe this approach. Another key

assumption is that the forces between atoms can be represented as infinite springs or force fields.

The model for this interatomic interaction is called a potential. Table 2.1 shows a basic timeline of

the major advances in molecular dynamics and atomic simulation.

Early on, in the 1960’s, simple physical models based on hard spheres (rubber balls) connected

with sticks were used. Even today, the dynamics of crystals are studied with charged particles to

represent atoms. Perhaps the earliest calculations that would later become molecular dynamics

were those of Metropolis et al in 1953. Metropolis Monte Carlo was developed to take advantage

of the advances in computational power available at the time to numerically analyze a liquid of

two dimensional spheres[24]. Expanding on this early Monte Carlo simulation technique was the

work done by Fermi, Pasta, and Ulam (and Tsingou) (FPU) in 1955 and later. FPU developed their

model based on one dimensional crystals. Their result was an apparent paradox, known as the FPU

problem. This experiment was key in showing the complexity of nonlinear behavior and the value

of computer simulations to analyze systems.

Perhaps most relevant to the work presented here is the 1960 paper ”Dynamics of Radiation

Damage” by the Vineyard group at Brookhaven Lab. In it, Gibson simulated radiation damage

events up to 400 eV in a metallic copper system. Their work was the first instance of utilizing

a classical MD approach to analyzing radiation damage in a crystalline material. In their case,

they employed a Born-Mayer potential to describe the repulsive force between atoms in addition

to a cohesive surface force. The methodology employed in that simulation is very similar to that

employed today for calculating threshold displacement energies[11]. In 1964, Rahman published

his work on the simulation of liquid Ar using a Lennard-Jones potential. Since the Lennard-Jones

potential describes the interatomic interaction of inert particles (noble gases), calculation of system

properties from these efforts compared well with experimental data[26].
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In the early 1970’s, there were advances in computational techniques allowing for the use of

more ensembles to describe molecular systems. However, it was not until the 1980’s that major

work byAndersen and later Parrinello and Rahman created frameworks for utilizing ensembles[30].

The last major relevant advance in molecular dynamics came about in 1985 with the work by

Car and Parrinello. Their work combined DFT and MD[32]. While this work does not use Car-

Parrinello molecular dynamics, it is important to note that it is a major advance in computational

physics and materials science to combine the two techniques. The rest of this work utilizes simpler

Born-Oppenheimer based molecular dynamics instead.

2.1.2 Classical molecular dynamics algorithm

initialize

the system

move atoms,

update velocities

calculate forces

move atoms,

update velocities

apply boundary

conditions

calculate and

output properties

move t by ∆ t

and iterate

Figure 2.1: Basic flow chart for the molecular dynamics algorithm.

Figure 2.1 shows the basic steps needed for a classical molecular dynamics simulation. First

the system is initialized (given an initial position, velocity, acceleration, charge, etc. for each

atom). Then the atoms are moved based on the calculated interatomic forces. The velocities are

updated and new forces calculated. Then the atoms are moved again and boundary conditions

applied. Output properties can then be calculated from this system based on the type of boundary

conditions and input parameters. Finally, time is progressed forward by a selected interval and
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the process can move forward. Selecting the time step is important because if it is too large, the

integration of system properties does not converge. This is usually obvious, but testing the system

with smaller time steps ensures that the selected time step is adequate[33].

At the ”apply boundary conditions” step in figure 2.1, the boundaries and constraints are applied

to the system. These boundaries are used to isolate certain properties of the system and ensure

certain thermodynamic properties are conserved. The table 2.2 shows five of the main options

when considering these boundaries. In addition to bounds on the properties and configuration of

the system, the edges of the simulation can be taken into account[33]. For instance, all of the work

presented here employs a periodic boundary condition (all boundaries on the simulation cell are

treated as periodic).

Table 2.2: Choices of ensembles and the properties that are kept constant in each. Alternative
names are also shown.

ensemble other names terms

NV E microcanonical N (number of particles), V (volume), E (energy)
NV T caonical N (number of particles), V (volume), T (absolute temperature)
µV T grand canonical µ (chemical potential), V (volume), T (absolute temperature)
NPH isoenthalpic-isobaric N (number of particles), P (pressure), H (enthalpy)
NPT isothermal-isobaric N (number of particles), P (pressure) T (absolute temperature)

2.2 Density functional theory

The basis of density functional theory (DFT) is that all of the properties of a system can be generated

from the electron density[34]. The name, density functional theory, comes from the assumption

that the properties of a material can be determined by functionals (a function of another function)

of the electron density. The algorithm works by taking an initial guess of the electron density and

following an iterative process that produces self consistent results. Once the input and outputs of the

algorithm approach values within a specified tolerance, the result can be returned along with other

calculated properties from that result. A simplified flow chart of this process is shown in figure 2.2.
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2.2.1 Historical context

Table 2.3: Timeline of the relevant major advances in quantum chemistry and density functional
theory.

year work author

1927 Hartree self-consistent field (SCF) methods[35] Hartree
1951 Slater method for simplifying Hatree-Fock method[36] Slater
1952 First application of Slater’s method[37] Pratt
1964 ”Inhomogeneous Electron Gas”[38] Hohenberg and Kohn
1965 One electron exchange and correlation [39] Kohn and Sham
1966 First use of Kohn-Sham equations with an LDA

pseudopotential[40]
Tong and Sham

1985 ”Unified approach for Molecular Dynamics and Density-
Functional Theory”[32]

Car and Parrinello

Table 2.3 shows a timeline of the major events in the development of DFT. The first major

development was the Hartree self-consistent field (SCF) method in 1927; these methods were used

to describe approximations of wave functions and energies for ions. Hartree sought to solve the

many body time independent Schroedinger equation from fundamental principles alone. Later on

this method was expanded by Fock as Hartree’s original approximation neglected the asymmetry

of the wave function. Later on, in the 1950’s, further simplification of the Hartree-Fock methods

were discovered and implemented. However, it was not until the 1960’s with the methods from

Hohenberg, Kohn, and Sham that the foundations for modern DFTwere codified. In the 1980’s Car

and Parrinello began work on unifying approaches to MD and DFT by adding additional degrees

of freedom to classical MD based on DFT. Only more recently (since the 2000’s) has it become

feasible to simulate larger systems due to the increased availability of computational power.

2.2.2 Density functional theory algorithm

To simplify calculations, the first approximation used is the Born-Oppenheimer approximation.

This holds that the electron and nuclear motion can be decoupled from one another because the

electrons move much more rapidly than the nuclei[41]. The nuclei are treated as being fixed during

electronic structure calculations. The electron density, n(r), is defined such that n(r)d3r is the

probability of finding an electron in the volume d3 about r [34]. For a single electron, it is |ϕi(r)|2
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initial guess ρ(r)

calculate effective potential

solve the Kohn-Sham equations

evaluate the electron density and energy

converged
output (forces,

eigenvalues,…)

no yes

Figure 2.2: Basic flow chart for the density functional theory algorithm.

where ϕi(r) is the single electron wave function.

ρ(r) =
N∑
i

|ϕi(r)|2 (2.1)

The first step in calculating properties from the DFT algorithm is to have an initial guess of the

electron density ρ(r), shown in equation 2.1. ρ(r) is determined as the summation of the probability

of finding an electron based on each wave function, ϕi(r).

veff (r) = Ven(r) +
∫

ρ(r’)
|r − r′|

dr’+ Vxc [ρ(r)] (2.2)

The effective potential in 2.2 is given as a function of both the electron density and the exchange-

correlation terms, Vxc. There aremanyways to describe the exchange-correlation term in the system

and it is typically broken up into two parts– the exchange and correlation. Solving for veff allows

it to be input into a wave equation where.

[
− ℏ2

2me

+ veff

]
Ψi = εiΨi (2.3)
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Solving the eigenvalue problem in 2.3 yields a new wave function which can then be used to

determine a new electron density.

ρ(r) =
∑

i|Ψi(r)|2 → Etotal[ρ(r)] = . . . (2.4)

After calculating the new electron density from equation 2.4, the result is compared with the

electron density from the first step. If they are within whatever convergence criteria set at the

start of the calculation, the result and final properties can be computed and reported. Among

these properties are the forces, pressure, total energy, eigenvalues of the wave equation, and more

depending on the parameters of the code and type of calculation.

Table 2.4: Basic comparison of the types of basis sets for commonly used DFT codes

code basis set

VASP Plane wave (PW)[42]

SIESTA LCAO (linear combination of atomic orbitals)[43]

ABINIT PW[44]

CASTEP PW[45]

Quantum ESPRESSO PW[46]

WIEN2K LAPW (linearized augmented plane wave) + LO (local orbital) [47]

2.2.3 Pseudopotentials

When using the SIESTA code, there are extra steps involved with configuring the inputs, namely

the generation of suitable pseudopotentials. A pseudopotential, shown schematically in figure 2.3,

is the potential used to produce a wave function similar to the wave function produced by an actual

atomic potential. The benefit of using a pseudopotential, (introduced by Hans Hellmann in 1934) is

that it is a simpler shape and the resulting wave function is easier to work with. The pseudopotential

is constructed such that the all-electron (or full-potential) core states are eliminated. The main

benefit of this is the description of the valence electrons is much simpler mathematically (fewer
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Forier modes), which makes using plane wave and other basis sets feasible. In this case, the core

electrons are treated as frozen (they are considered to be together with the nuclei as the rigid ion

core) such that the valence electrons are the only ones considered explicitly. SIESTA also contains

an auxiliary code for generating pseudopotentials. The input consists of the atom, mass, orbital

configuration, and occupation.

Ψpseudo

Vpseudo

V

Ψ

Figure 2.3: Schematic representation of the wave function and potential of an atomic potential and
a pseduopotential [3].

There are many ways to describe a pseudopotentials and many different approximations that

are available to the user. Since testing the applicability of chosen pseudopotentials to the problem

at hand is left to the end user, it is sometimes a non-trivial task to generate the data required. For

instance, recent papers have come out trying to better produce pseudopotentials that agree with data

from VASP based calculations. SIESTA supplies a database on its website of LDA (local density

approximation) and GGA (generalized gradient approximation) pseudopotentials [43], but some of

them are not properly configured for every type of simulation so taking the electron configurations

and generating suitable potentials from the bundled ATOM code is needed [48] (as of version 4.1,

the ATOM code is no long directly bundled with SIESTA; that version of the code is not used for

the current work). Generating the pseudopotentials consists of telling the code how far the various

electron orbitals extend in space and what the occupation of each valence orbital is. It is also
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possible to perform simulations using all of the electrons (core and valence) but unnecessary for

most cases because the core electrons do not interact. Frequently, generating a pseudopotential is

needed to have empty atomic orbitals not included in the ones supplied by the database; generating

a custom one or modifying other simulation parameters is needed.

The main issue with creating pseudopotentials in SIESTA is that there is not a standardized

procedure for development. Recently, within the last 5 or so years, there has been a great deal of

research on developing suitable pseudopotentials for the SIESTA code. These efforts have been

designed to produce results as similar to other codes, most commonly VASP, as possible. This is

especially true for heavier elements with many electrons and partially occupied d and f valence

orbitals. In particular, the heavier cations in LiNbO3 and LiTaO3 require special attention since their

orbital configurations are very important for predicting how the atoms interact with the surrounding

system. It is less important for lighter elements that have been better studied (like Li, O, and Mg)

which only have s and p valence orbitals.

2.2.4 Ab initio molecular dynamics

From both 2.1 and 2.3, it can be seen that in the 1980’s, both computational methodologies began to

mature– with DFT gaining new exchange and correlation approximations and classical MD gaining

viable methods of performing new types of dynamics with new thermostats. Combining the two

was not far away, especially due to the work by Car and Parrinello. Computational power has,

however, lagged behind the theoretical frameworks. Only recently, with the dramatic increase in

availability of super computing resources, have large scale simulations become possible.

Figure 2.1 has a force calculation step. Figure 2.2 can output forces. Combining those two

elements together produces a very useful synergy where MD calculates the atom positions and

motion and DFT provides the interatomic forces in what is known as ab initiomolecular dynamics

or AIMD. Many combination of codes can run AIMD simulations, but for the work presented here,

SIESTA’s built in algorithms for dynamic simulations are used. SIESTA provides a wide array
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of ensembles for running calculations, but in order to make sure the simulations can be run in a

reasonable time, the microcanonical ensemble is used (see table 2.2 for a partial list of ensembles;

SIESTA is capable of running all of those listed)[43]. In the NVE (constant number of particles,

constant volume, and constant energy) ensemble, the integrator used in computing the atommotion

is also the simplest, the velocity Verlet algorithm.

There are two main types of AIMD– Born-Oppenheimer and Car-Parrinello[32]. Born-

Oppenheimer based simulations use DFT to treat the forces and an MD algorithm of the user’s

choice to calculate motion. Car-Parrinello based simulations leverage electronic as well as physical

degrees of freedom to perform calculations. Depending on the intended use case, either type of

dynamics can be more taxing to calculate. For this work, it is crucial to consider how long the

simulations take to complete.

Since AIMD used in the NVE ensemble only requires the use of DFT to produce the interatomic

forces, it is also possible to write a separate code to act as the MD calculator and simply take

the forces from the DFT calculations. An implementation of this is found in the ASE (Atomic

Simulation Environment) python package [49]. The vast majority of the computational complexity

in AIMD simulations is taken up by the DFT steps. Moving the atoms using the basicMD algorithm

is far less computationally intensive.

When simulating Ed events, it is important to remove as many variables as possible and modify

parameters to reduce simulation time. That is the reason why most of this work is performed with

an initial system temperature of 0K. Random velocities can contribute to an increase in the energy

required to displace an atom from its lattice site, which is a problem because more energy in the

system results in a longer simulation time[50, 51, 52]. Also, if running any of the other types of

ensembles for calculating atomic motion, thermostats must be considered. In a PKA threshold

displacement simulation, the atomic motion of the PKA and displaced atoms should not interact

with the thermostat because this would affect the results of both the resulting defect structures and

energy required to displace an atom. Because of this, the NVE ensemble is the clear choice due to

it not relying on the thermostat for computing atom motion in addition to its lower computational
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cost. With increased availability of computational power, it becomes feasible to perform AIMD

based calculations with more complex materials, like LiNbO3 and LiTaO3 .
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Chapter 3

MgO simulation

3.1 Introduction

Several ceramic oxides have been identified as candidates for use in waste forms for long term

storage of transuranium elements or actinide transmutation targets due to their chemical and

physical stability under irradiation conditions. Magnesium oxide, MgO, has been extensively

studied for its applications in nuclear energy applications. MgO has been considered as an inert

matrix for nuclear fuels, an insulator for fusion reactor designs, and for radioactive waste disposal.

As a transmutation target, MgO is a promising candidate due its low neutron cross section and

high thermal conductivity in addition to its radiation damage resistance. The rocksalt structure

makes it ideal for studying basic effects of radiation damage and defect mobility in ceramic oxides.

Previously figure 1.3 shows a rendering of the conventional MgO unit cell. The simple structure

of MgO makes it one of the best materials to outline the various types of calculations required for

DFT, MD, and AIMD analysis. MgO will be used to describe the basics of the processes involved

in determining the static properties like the ground state of the material, the dynamic properties like

threshold displacement energy, and the formation energies of defects in the material.

Before any dynamic simulations can begin, a thorough study of the ground state properties is

necessary to validate the suitability of the simulation parameters and pseudopotentials. After the

ground state properties are verified, the threshold displacement energies can be calculated through

the method described in this section. Finally, the resulting defect structures and full displacement
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pathways are described and analyzed. After defining the defect structures, the formation energies

and energy required to create the defects can be calculated through a small number of static

DFT calculations based on observed defect structures. As the material’s composition increases

in complexity, these types of studies become more difficult, as will be the case for LiNbO3 and

LiTaO3 later.

3.2 Computational methods

AIMD simulations are performed using a modified version of the SIESTA code (version 2.0)[53].

Later calculations use newer versions (3.2, patch level 5) of the code since technical support and bug

fixes are focused on the current version[43]. Future work will likely be done with the development

version of the code (version 4.1); older versions lack developer support so it is important to keep

that in mind when considering which version to use.

optimize DFT

parameters

calculate bulk

properties

construct and relax

simulation cell

run AIMD

simulations

analyze defect

structures

Figure 3.1: Flow chart illustrating the steps needed to configure an AIMD based Ed calculation.
At any point in the flow chart, it may be required to go back and further optimize the simulation
parameters.

Figure 3.1 shows the basic steps taken in configuring an AIMD simulation in SIESTA. The first

step is to take an initial system configuration and find the ground state of the structure of interest.
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Typically this requires utilizing the SIESTA pseudopotential database and researching lattice

geometries. In this case, the pseudopotentials are selected from the SIESTA database[43]; both

pseudopotentials are described by a norm-conserving Troullier-Martins type pseudopotential[54]

factorized in the Kleinman-Bylander form[55]. The exchange correlation functional is determined

within the GGA approximation as parameterized by Perdew, Burke, and Emzerhof (PBE)[56].

Ground states are chosen as 3s2 for Mg and 2s22p4 for O.

Once the pseudopotential is properly configured, the next step is to fully relax the system

to determine the ground state. This is done by using the experimentally determined lattice

constants and allowing for the system to find a minimum energy through a conjugate-gradient

(CG) minimization algorithm. Then, a simple static DFT calculation is performed on the relaxed

structure along with modified DFT parameters (cutoff energy, K-point sampling in the Brillouin

zone, and valance wave function configurations). A compromise between computational rigor and

time taken for each calculation must be considered, hence the reason for selecting a cutoff energy

of 70 Ry for the basis set and a K-point sampling of 1 × 1 × 1 for the larger simulation cells and

8× 8× 8 for initial relaxations.

3.2.1 Bulk material properties

Lattice constant and bulk modulus

Once the initial system configuration is selected and relaxed, bulk material properties can be

calculated. The first set of calculations relating to the bulk properties is the determination of

the lattice constant and bulk modulus by fitting to an equation of state. In this case, the Birch-

Murnaghan equation of state[57] is used. The simpler Birch equation of state can also be used to

fit these systems. The Murnaghan equation of sate 3.1 was first proposed by Murnaghan in 1944

[58]. It is a relationship between the pressure P , volume V , and bulk modulusK0 of a material

under compression.

P (V ) =
K0

K ′
0

[(
V

V0

)−K′
0

− 1

]
(3.1)
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In connection to ab intio calculations, the equation of state can be integrated along with the

relationship P =
−dE

dV
to yield equation 3.2. This will be the primary form of the equation utilized

because it is a direct relationship between volume, energy, and bulk modulus of a material.

E(V ) = E0 +K0V0

[
1

K ′
0(K

′
0 − 1)

(
V

V0

)1−K′
0

+
1

K ′
0

V

V0

− 1

K ′
0 − 1

]
(3.2)

Later, the following equation of state was proposed by Birch and Murnaghan in 3.3 based on

the work by Murnaghan as described above[57]. The Birch-Murnaghan equation of state was, like

the equation developed by Murnaghan, based around cubic symmetry in crystals. This particular

equation is the third-order isothermal equation of state for the strain components.

P (V ) =
3B0

2

[(
V0

V

) 7
3

−
(
V0

V

) 5
3

]{
1 +

3

4
(B′

0 − 4)

[(
V0

V

) 2
3

− 1

]}
(3.3)

Applying the same procedure as before with the Murnaghan equation of state and integrating

by pressure yields equation 3.4[57, 58].

E(V ) = E0 +
9V0B0

16


[(

V0

V

) 2
3

− 1

]3

B′
0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

] (3.4)

Taking the simulation cell volume from an initial relaxation, a range of volumes is selected around

that value and the energy computed for each volume using a static calculation. The resulting energy-

volume curve is then fitted to equation 3.4 using a Nelder-Mead optimization algorithm to find the

best fit.With these optimized lattice constants and a value of the bulk modulus produced by the

fitting algorithm, it is then possible to verify that the computational configuration selected produces

reasonable simulations for comparison to other DFT and experimental work. The computation set

up is then used to construct simulation super cells for performing the Ed simulations.

Elastic properties

For more complex structures, the results from fitting to equations of state are not reported. Fitting

to an equation of state requires minimizing each free variable one at a time for the system in
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question. For a cubicmaterial, this requires varying only the lattice parameter, a. For more complex

structures, this increases as N2 for N number of free variables. It is easier to calculate the elastic

properties of the material by deforming the material and determining the forces on the defected

simulation cell. Calculating the elastic constants for a material requires taking a unit cell at ground

state and applying a set of deformations and seeing the stress response. The process defined by the

Materials Project begins with defining the deformations [59]

E =
1

2

(
F TF − I

)
(3.5)

Where F is the deformed matrix as defined by the set of:

F =


1 + δ1 0 0

0 1 0

0 0 1

 ,F =


1 0 0

0 1 + δ1 0

0 0 1

 ,F =


1 0 0

0 1 0

0 0 1 + δ1

 (3.6)

δ1 ∈ {−0.01,−0.005,+0.005,+0.01} is the set of strains selected for deformation; there are 12

calculations for normal strains. For shear strains, the set of deformation matrices in equation 3.7

F =


1 δ2 0

0 1 0

0 0 1

 ,F =


1 0 δ2

0 1 0

0 0 1

 ,F =


1 0 0

0 1 δ2

0 0 1

 (3.7)

For shear modes, δ2 ∈ {−0.005,−0.0025,+0.0025,+0.005} is used for the set of shear strains

for a set of 12 calculations, leading to a total of 24 deformations applied to the system. After

calculating the stress from the full set of 24 deformed cells, the software package pymatgen for

the python programming language provided by the Materials Project provides an easy means for

converting the stress response to elastic constants[60].

[σ] = [C][ϵ]orσi = Cijϵj (3.8)
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Equation 3.8 shows the generalized from of the relationship between stress σ and strain ϵ, using

the stiffness tensor C. The stiffness tensor, in the generalized form is represented as

[c] =



c1111 c1122 c1133 c1144 c1155 c1166

c2211 c2222 c2233 c2244 c2255 c2266

c3311 c3322 c3333 c3344 c3355 c3366

c4411 c4422 c4433 c4444 c4455 c4466

c5511 c5522 c5533 c5544 c5555 c5566

c6611 c6622 c6633 c6644 c6655 c6666


≡



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


(3.9)

Symmetry in the MgO unit cell means that there are really only three independent elastic constants,

as shown in the stiffness tensor in 3.10, but for the sake of completeness and to ensure no

computational error with the method above, all 24 deformations are performed.

[C] =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


(3.10)

3.2.2 AIMD

An initial 3×3×3 super cell of 216 atomswas used. Due to the use of periodic boundary conditions,

however, it became necessary to increase the simulation cell size in several cases. Our previous

work[50] has shown that increasing the cell size does not contribute significantly to the results of

Ed calculations, so using a larger 4 × 3 × 3 (288 atoms) and a still larger 4 × 4 × 3 (384 atoms)

proved necessary in certain cases. A time step of 1.0 fs was used for all simulations. A simple test

to see if the time step is adequate is to perform two Ed calculations with different time steps to see

if the results are the same. A time step of 1.0 fs compared nearly identically to a shorter time step

of 0.5 fs for Mg[100] calculations so a 1.0 fs time step was determined to be reliable.
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Figure 3.2: Method for determining threshold displacement energies.

To actually perform an Ed calculation, kinetic energy is supplied to an atom along a particular

direction. In this case, three directions are chosen– [100], [110], and [111]. Figure 3.2 shows the

basic method for determining the threshold displacement energy. An initial guess as to Ed is taken.

A PKA in the relaxed simulation cell is then supplied with that energy. If it is displaced by the

end of the simulation, then the energy is decreased and run again. Likewise, if it is not displaced,

the energy is increased and the simulation run again. This process is repeated until results have

converged within the specified tolerance. In this case, the tolerance was selected at 0.5 eV. Initial

values for Ed are taken from the summary paper from Zinkle and Kinoshita[61] who suggest using

55 eV for codes like TRIM[10].

Usually the results are very obvious as towhether or not the PKAhas been completely displaced,

but the process needs human oversight to analyze the results. Figure 3.3 shows two traces of the x-y

motion of the atoms in the case of theMg[100] PKA that are 0.5 eV apart. Sometimes the timemust

be increased on the simulation because the PKA is still in motion by the end of the simulation. The

defect structures can also then be reported. Care must be taken to ensure that the defects observed

are stable within the context of the simulations. The longer the simulation progresses in time,

the more energy is transferred to the atoms in the supercell. In a real material, there are many

more atoms to transfer this energy to so it dissipates throughout the system. In small systems used
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Figure 3.3: Traces of the x-y plane of a failure (left) and success (right) to produce a Frenkel pair.
The difference in energy between the two is 0.5 eV.

in AIMD, this energy is kept within the system due to limitations on which types of thermostats

can be used. If too much energy is transferred to the system, the result may not represent actual

phenomena. If too much energy is allowed to dissipate to the rest of the atoms in the system, it

a displacement chain can interact with itself requiring a larger simulation cell. The ideal situation

would be to have the simulation progress long enough to produce a meta-stable defect structure

within the bounds of the simulation parameters without going more than around 5 ps in time.

3.2.3 Defect chemistry

The next type of calculation required for this work involves the defect chemistry of point defects

(vacancies and interstitials). Defect formation energy calculations requires calculating the energy

of a pristine crystal, the defected crystal, and the compositional energy of the isolated atom.

EF
defect(q) = ET (defect, q)− ET (pristine, q) + µdefect + qdefectEF (3.11)

Equation 3.11 shows the defect formation energy for a single O vacancy in the structure with some

charge q. The chemical potential of the defect is taken away from the pristine system, along with

the associated energy due to the charge of the defect. For a simple system (like MgO), the chemical
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potentials are relatively simple to catalog; they are the potential for Mg in Mg metal, O in O2 gas,

and the energies of Mg and O inMgO. Formation energies of isolated defects can also be calculated

from utilizing ghost atoms in SIESTA.

3.3 Results

3.3.1 Lattice constant and bulk modulus

Figure 3.4: Energy versus volume of the conventional cubic MgO unit cell. The curve is fit to the
Birch-Murnaghan equation of state. Minimum unit cell volume is also reported.

Figure 3.4 shows the variation in energy versus volume for the conventional cubic MgO unit

cell. The fit to the data yields lattice parameter, a of 4.172 Å and a bulk modulus B 182 GPa at

the minimum energy of the curve. The calculated value of a agrees well with experimental values

ranging from 4.210 Å to 4.220 Å[62, 63, 64, 65, 66]. The bulk modulus is in fair agreement with

experimental values of 163.9 [67], 162.20 [68], and 156 GPa[69]. It is also consistent with DFT

based results of 172 [70], 185.9 [71], and 169.1 GPa [71].
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3.3.2 Elastic constants

Performing the relaxations for the deformation set described in 3.10 using the lattice parameter of

4.172Å results in the following stiffness tensor (in GPa):

[C] =



302.64 113.03 113.51 0.33 0.23 0.14

113.58 302.06 113.51 0.07 0.60 0.70

113.58 113.03 302.55 −0.64 −0.19 0.13

0.11 0.56 −0.69 177.29 −0.42 −0.70

−0.59 0.10 −0.69 −0.37 177.25 −0.51

−0.59 0.56 0.07 −0.12 −0.14 177.62


(3.12)

The symmetry of the structure means that the values for C11, C22 and C33 should be equal. Within

the tolerances set for determining elastic constants, this is indeed accurate. C12 values are within

0.55 GPa of each other which is well within acceptable tolerances. Values for C44 fall within a

narrow range of 0.38 GPa, also within acceptable tolerances. The rest of the stiffnesses are to be

reported as 0 since they are within the computational tolerances used in SIESTA. The final elastic

constants are reported in table 3.1.

Table 3.1: Stiffnesses for MgO in units of GPa

C11 C12 C44 source

302.42±0.25 113.37±0.24 177.39±0.17 this work
306.7 93.71 150.76 exp.[72]
297.08 95.36 156.13 exp.[73]
338 91 118 DFT[74]
286-352 91-108 158-188 LCAO[75]

3.3.3 Threshold displacement events

Results for Ed are summarized in table 3.2 and figure 3.6. After the atom is displaced from its lattice

site, as either a replacement or interstitial, the simulations are further analyzed to determine whether

or not the defect structure are stable at the end of the computational time limit. Sometimes, this

requires increasing the simulation time and continuing the calculation further. Most of the defect
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structures presented here stabilize at around 600 fs into the calculation. A further visual aid is

figure 3.5 where the direction families are overlaid on a small MgO supercell.

Figure 3.5: Directions tested overlaid onto a 2×2×2 MgO supercell

There are two main types of interactions for a lattice site during the simulation ─ either the

original atom is replaced or a defect is formed at or near the site (such as interstitial formation).

As detailed in the final defect state in table 3.2, a PKA produces at most two total interstitials that

are stable at the end of the simulation. No simulation produces more than one Mg interstitial, and

those that produce two interstitials (Mg [100], Mg [111], and O [100]) create either two O Frenkel

pairs (O [100]) or one Mg and one O Frenkel pair. None of the O PKAs produce any stable O
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replacements, but the Mg [111] recoil produces two.
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Figure 3.6: Comparison of Ed values calculated in MgO to several classical MD sources (b[4], c[5],
and d[6]) and experimental (a[7]) data sets.

Table 3.2: Ed values for MgO pkas along with their final defect states

PKA dir. Ed (eV) defect state

Mg [100] 122.5 Mg(PKA)Mg + VO +Oi + VMg +Mgi
Mg [110] 29.5 Mg(PKA)Mg +MgMg + VMg +Mgi
Mg [111] 122.5 Mg(PKA)Mg +MgMg +MgMg +MgMg+

OO +OO + VO + VMg +Oi +Mgi
O [100] 150.0 VO + VO +O(PKA)i +Oi

O [110] 25.5 VO +O(PKA)i
O [111] 65.5 VO +O(PKA)i

During the Mg displacement event initiated along [100], the primary chain of displacements

and replacements is along the initial [100] direction. The Mg PKA displaces the next atom (O) in

the chain of atoms along [100]. That displaced O then forms an interstitial, leaving an O vacancy

behind. Before finally coming to rest in a stable configuration, the displaced O atom displaces 3Mg

atoms along [011] immediately adjacent to it, but these three Mg settle back to their initial lattice

sites eventually. The PKA then replaces the next atom (Mg) along the [100] direction and remains

on that lattice site. The transferred energy is still high enough to push the next oxygen atom in the

chain to displace the Mg atom adjacent to it along the [100] direction. The oxygen atom also causes

some temporary displacements of Mg atoms in the [011] direction but those atoms return to their
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original lattice sites at towards the end of the simulation. In total, two Frenkel pairs (1 Mg and 1

O) are formed and the PKA replaces the next Mg atom along [100].

ThreeMg atoms in total are displaced during threshold displacement simulation for theMgPKA

along the [110] direction. The first two events along [110] are replacements. The PKA replaces the

first neighboring Mg atom in the chain, which in turn replaces the second Mg atom in the chain.

The third atom is then pushed into a cube-centered interstitial site where it remains stable until the

end of the simulation.

The Mg [111] simulation involves the most displacement and replacement events of all the

PKAs, and is therefore the most complicated to describe. The Mg PKA first collides with the

closest O atom along [111], which is displaced. Temporarily, the Mg PKA resides on the vacant

O site while additional vacancies are created that will eventually allow it to migrate. The O atom

displaces an Mg atom and then rebounds along [001̄] where it forms a split interstitial (it eventually

returns to its initial lattice site). The Mg atom that is displaced, still with momentum along [111],

creates displacement chains of Mg and O parallel the [110] direction. The Mg chain along [110]

produces two replacement events and terminates with the formation of an interstitial. Since the

Mg atom that initiates the [110] oriented replacement chains leaves a vacancy, it provides a space

for the PKA and adjacent atoms to migrate producing two more replacements. With the O site

now vacated by the PKA, its original occupant returns by the end of the simulation. Finally, the

[110] aligned O displacement chain produces 2 replacement events terminating in a split interstitial

dumbbell along [110]. In total, six replacement events occurred (4 Mg and 2 O) and 2 Frenkel pairs

are formed (1 Mg and 1 O).

The O [100] recoil, seen in creates 2 split interstitials: the first involving the PKA and the other

involving an O displaced by the PKA. At first along the [100] direction, the PKA collides with

the adjacent Mg atom. That atom gains enough kinetic energy to interact with the next O and to

displace it, at a slight angle, toward the next Mg atom. Instead of displacing that Mg atom, the O

recoil deflects slightly and passes through the next three (100) planes. After passing through those

three atomic planes, the recoil forms a split interstitial. The PKA rebounds backwards along [100],
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where it forms a split interstitial only half a unit cell behind its original lattice site.

The O [110] recoil has the lowest displacement energy and forms simplest defect configuration

out of all studied cases. The PKA forms a split interstitial with the next O atom along [110]; there

are no replacements or other interstitials that form.

Compared to the Mg [111] recoil event, the O [111] recoil produces a much simpler defect

configurations. Along the [111] direction, the PKA displaces an Mg atom that in turn displaces

another O atom. That Mg atom’s trajectory turns to displace another Mg along [110], but both of

these atoms eventually return to their original lattice sites. The displaced O also forms an unstable

split interstitial and then returns to its original lattice site after around 400 fs. The PKA rebounded

along [010] and forms a split interstitial which slowly travels over half a unit cell before coming to

rest at the final interstitial site.

3.4 Discussion

3.4.1 AIMD defects

Once an atom has begun moving during the simulations, it generally maintains its path along

the initial direction. Some of the recoils, like Mg[111], gradually change direction during the

simulation, eventually aligning with a [110] direction. During all of the simulations, two primary

interstitial defects evolved independently of the PKA species. As shown in figure 3.7, the Mg

interstitial sits at a cube-centered site, with the cube being made of O and Mg. The O interstitial

occupies a split interstitial configuration, shown in figure 3.8. The split O interstitials are suggested

from theoretical calculations; DFT and classical molecular dynamics calculations have shown that

these split O interstitials align along either a [110] or [111] direction, depending on the charge state

of the defect. All of the O defects observed during these simulations, however, aligned with a

[110] direction. Compared to DFT calculations, this configuration agrees with results produced by
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Figure 3.7: All Mg atoms are green; all O atoms are red. Observed Mg vacancy (cube) and
interstitial (cube centered site) in all of the simulations.

neutrally charged O (O0) interstitials[76, 77, 78].

AIMD show higher values for Ed for both Mg and O along [100] and [111] directions when

compared to experimentallymeasured values[7]. This is to be expected due to the numerous sources

of uncertainty such as electron beam misalignment and difficulties in the analysis of color centers;

experimentally reported values are all close to Ed ave of 55 eV regardless of the direction[61].

Additionally, the experimental results are reported at room temperature whereas these simulations

are performed at low temperature (0 K) to ensure no influence of random velocities in the results.

Along [110], AIMD gives a value about half that of the classical MD and experimental results.

Previous studies using classical MD and AIMD have also shown that Ed obtained by AIMD is

lower than that provided by classical MD[79, 80, 81]; partial-charge redistribution may be the

contributing factor to the lower values for Ed .

3.4.2 Defect chemistry

For comparison to previously reported values, the defect formation energies and configurations

need to be quantified and calculated. Based on initial testing and literature surveys, the minimal cell

36



Figure 3.8: All Mg atoms are green; all O atoms are red. Observed O vacancy (cube) and interstitial
(split [110] configuration) in all of the simulations.

size needed to report defects (interstitials and vacancies) in MgO is 216 atoms (which corresponds

to a 3×3×3 supercell). This is also the minimum cell size required for performing Ed calculations.

Larger cell sizes are not required since the values for formation energies of various point defects

do not change.

The focus of this work is not to report defect formation energies so those are secondary to

cataloging observed defects. Determining the types of defects produced during a collision cascade

is necessary to understanding the processes by which a material is damaged under irradiation.

There are four equations used for calculating point defect formation energies:

EF
V O(q) = ET (Ma−1Ob, q)− ET (MaOb, q) + µMg + qEF (3.13)

EF
V O(q) = ET (Ma+1Ob, q)− ET (MaOb, q)− µMg + qEF (3.14)

EF
V O(q) = ET (MaOb−1, q)− ET (MaOb, q) + µO + qEF (3.15)

EF
V O(q) = ET (MaOb+1, q)− ET (MaOb, q)− µO + qEF (3.16)
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Figure 3.9: Defect formation energies for various defects in MgO

In each case, an atom is either added or removed from the system and the corresponding

chemical potential is added or subtracted from the system. The Fermi energy, EF , can be varied

to show how the preferred charge state varies in the defected structures. Initial estimates use the

Fermi energy calculated from a large (4×4×4 super cell) perfect crystal. Additionally, only the

lowest energy state is considered for each of the charge states. The cross over points are marked

with dashed lines. In general though, there is a prevalence of the neutral or doubly charged defect

(Mg2+ and O2-) states for all cases tested.

Care must be taken when considering charged Mg defects. Standard plane wave DFT methods

poorly describe hole localization behavior for Mg vacancies and electron localization for Mg1+

interstitials. However, despite this short coming of standard plane wave DFT, the calculations have

been performed anyway to serve as an example of the procedures involved with calculating defect

formation energies. Additionally, there are some corrections that would need to be performed to

limit the influence of finite size limits, but that is not the focus of the work presented here. Rather,

the focus is on whether or not the trends in the defect formation energies are similar to those found

in literature and an analysis of the defect structures present in the material. Defects produced from

AIMD simulations might not be intuitive and tested using DFT methods.
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For O defects (interstitials and vacancies) the preferred charge state, shown in figure 3.9,

is either neutrally charged (O0) or doubly charged (O2-). This agrees with literature results

and confirms that the singly charged defects are not energetically favorable in the material[76].

Neutrally charged Mg defects (Mg0) are the only ones that are confirmed to be accurate due to the

sort comings of DFT simulations with theses types of defects. Values for the other charge states

are reported to demonstrate the technique, but they are not reliable.

3.4.3 Charge redistribution and orbital occupation
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Figure 3.10: Partial charge transfer peak as a function of the threshold displacement energy for four
of the PKAs, as annotated on the figure. The trend line is a linear fit to the data.

Thanks to the ability of AIMD based codes to provide information on the electronic structure

changes during the course of a simulation, it is possible to figure out how the electrons of any atom

in the simulation respond. One possible means of analysis is through monitoring the charge on the

PKA as it travels through the lattice to determine how bonding changes. Other knock on atoms can

be looked at as well to determine if their electronic structure changes significantly or if they form

different types of bonds through the course of the simulation.
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Another means of analysis using the electronic structures of the material is to monitor how

the individual sublattices respond to the event. For instance, in MgO, it is possible to analyze

the electron transfer or redistribution between the Mg and O sublattices. As the system nears its

potential energy peak (where the atomic nuclei are closest to one another), there is an accompanying

peak in the change in electron occupation of the sublattices. The peak in the charge redistribution

is plotted in figure 3.10. They are measured by taking the total change in the effective Mulliken

population of each sublattice over time. These peaks likely represent the maximum screened ion-

ion interactions. This same trend has been observed in other AIMD simulations of low energy

recoils as well[51].

3.5 Conclusion

Low energy recoil events in MgO are investigated using ab initiomolecular dynamics simulations,

based on density functional theory. The threshold displacement energies are shown to be highly

direction dependent; displacements along single-species atomic chains occurred far more easily

than those along mixed-species atomic chains. The two minimum Ed values (25.5 eV for O and

29.5 eV for Mg) both occur along the [110] single-species atomic chains. Low-energy recoil events

of Mg and O form two types of interstitials; while Mg prefers to sit on cube centered sites, O prefers

to form [110] aligned split interstitials. Compared to classical MD simulations, AIMD follows the

same general trends. The lower values from AIMD calculations are attributed to partial-charge

transfer assisted processes. Charge transfer potentials in classical MD may be a possible approach

to better predict defect dynamics. SinceMgO is used as amodel material due to its simple electronic

and atomic structure, these results are useful when considering the radiation effects in ceramic

oxides and in particular the radiation resistance of crystals with the cubic crystal structure. The

work on MgO helps to demonstrate computational techniques required for the analysis of more

complex materials.
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Chapter 4

Lithium niobate and lithium tantalate

4.1 Background

As mentioned in the introduction, LiNbO3 and LiTaO3 are important optical materials used widely

in communication and other devices that rely on both of their elecro-optic, photorefractive, and non-

linear optical properties. Recently, there has been interest in utilizing both materials in a mixture

since their chemical and physical properties are so similar. To assist with preventing damage

to these materials due to optical and other radiation concerns, they are often doped with MgO.

They are often used in environments where intense optical radiation can damage the material, so

understanding the processes by which damage occurs is essential to engineering more radiation

resistant materials.

Both materials studied here share nearly the same atomic structure, as can be seen in the

hexagonal cells in figure 4.1. The only difference between LiNbO3 and LiTaO3 at low temperatures

is the larger cation– either Nb or Ta. Nb and Ta are in the same period on the periodic table so

their valence electron structure are similar when surrounded by a coordinating O2- octahedron,

however their weights are considerably different with Ta weighting nearly twice as much as Nb. It

is therefore expect that the collisions in the material with Nb atoms will transfer more momentum.

Work done since the late 1980’s has suggested that there are intrinsic defect complexes involving

Nb or Ta antisite defects with compensating Li vacancies.
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Figure 4.1: Hexagonal LiNbO3 and LiTaO3 unit cells. Bonds show O octohedra that surround Nb
ions. Red atoms are O, purple atoms are Li, teal atoms are Nb, and blue atoms are Ta.

4.2 Methods

4.2.1 DFT parameters

All simulations in this work are performed with the SIESTA code version 3.2-pl5 [43]. Energy of

the initial system needs to be minimized to ensure that the configuration will have no impact on

the AIMD simulations later on. The specific parameters used for these simulations are chosen to

ensure that the results are rigorous enough for precise results that allow simulations to be completed

in a reasonable time scale due to the computational complexity of DFT and AIMD simulations.

Table 4.1: Pseudopotential configurations for all atoms used in LiTaO3 and LiNbO3 simulations.

species orbital configuration orbital cutoff radii (Bohr)

Li 2s1 rs = 2.26, rp = 2.26, rd = 2.59, rf = 2.59
Nb 5s15p04d4 rs = 2.85, rp = 3.12, rd = 2.52, rf = 2.52
Ta 6s26p05d3 rs = 3.35, rp = 3.66, rd = 2.51, rf = 2.42
O 2s22p4 rs = 1.47, rp = 1.47, rd = 1.47, rf = 1.47

One of the main issues impeding wider adoption of the SIESTA code is the lack of suitable

pseudopotentials. The lack of included and reliable Nb and Ta pseudopotentials resulted in having
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to search for a well defined and properly tested pseudopotential. Work by Rivero et al focused on

creating psuedopotentials for use in SIESTA that are intended to match VASP results as closely

as possible[48]. The resulting pseudopotential configurations are shown in table 4.1. Two of the

commonly available types for SIESTA calculations, LDA (local density approximation) and GGA

(generalized gradient approximation) are intially considered. Due to only small differences in the

predicted lattice energies and the long computational time for these particular material systems,

LDA pseudopotentials are selected for the remainder of this work.

LiNbO3 is a rhombohedral structure so the k-point mesh should be centered at (0.5, 0.5,

0.5) rather than the Γ point when considering defected structures[14]. Γ point calculations in

rhombohedral structures can have difficulty converging, as demonstrated by work using the VASP

code by Xu et al in ferroelectric LiNbO3 [14] [18]. Smaller simulation cells, like those used

for elastic constants, utilized a 5×5×5 k-point mesh over the Brillouin zone generated by the

Monkhost-Pack scheme. Simulation cells smaller than 120 atoms used a 2×2×2 mesh and all

other larger calculations used just the (0.5, 0.5, 0.5) point.

The benefit of using SIESTA compared with other codes is that it allows for DFT calculations

involving ghost atoms[43]. Having ghost atoms in the systemmeans it is relatively easy to calculate

the chemical potential of each atom in the lattice. This is done by looking at the energy of a single

atom in a lattice of ghost atoms. The results, which are the chemical potentials of the atoms

in the system, are used in calculating defect formation energies. The formation energy of bulk

LiNbO3 and LiTaO3 can be calculated by subtracting the chemical potentials of all constituent

atoms from the bulk energy from the relaxed system. Having the chemical potential of one atom in

the system allows for more reliable calculations of the defect structures as well. Defect structures

are also calculated later on after determining the approximate geometry from AIMD.
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4.2.2 Material properties

To ensure that the properties of the selected pseudopotential parameters are applicable to the given

problem, several sets of calculations were done to calculate bulk elastic properties of the material.

Bulk elastic properties provide a good measure of how the DFT parameters and pseudopotentials

represent the interatomic forces in a system. Because we are intending to perform simulations

that calculate forces based on DFT, the elastic properties give a reasonable metric to asses their

suitability. There is no well defined method for developing SIESTA pseudopotentials so care must

be taken to ensure that all selected parameters are going to produce viable results.

The basic procedure for calculating bulk properties is in two parts : first is using an equation of

state to associate volume of the unit cell with energy of the unit cell; second is taking the unit cell

with the minimum energy and subjecting it to a series of small strains to determine the interatomic

forces acting upon the unit cell. If the properties predicted by these two tests match well with

experimental and other DFT based results, work can proceed on calculating threshold displacement

energies and defect states.

Lattice constant, lattice sites, and bulk modulus

For both LiTaO3 and LiNbO3 the same procedure for determining the optimal lattice configurations

is used. Following the same procedure for MgO, the primitive system is relaxed with all parameters

variable. Next, the volume of that optimal primitive cell is used to create a set of volumes ±10%

of the volume of the system. Since there are now two lattice constants, a and α, the rhombohedral

angle, there need to be two sets of relaxations performed at each volume by varying α. At each

volume, the minimum angle and corresponding lattice parameter are determined and then the

minimum energy of each of those curves can be used to fit to 3.4. This yields a minimum volume

for the system as well as a bulk modulus. The value for α for the minimum volume can also be

calculated which yields the minimum lattice parameter a.
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Elastic properties

The same procedures used for MgO are used here. The optimum lattice parameters are used to

create a conventional (hexagonal) unit cell for LiTaO3 and LiNbO3 . The conventional cell is then

subjected to the same series of 24 deformations recommended by the materials project and analyzed

to produce the elastic constants[59]. The same values for δ in the deformation set for MgO are used

for LiNbO3 and LiTaO3 .

[C] =



c11 c12 c13 c14 0 0

c12 c11 c13 −c14 0 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 0

0 0 0 0 c44 c14

0 0 0 0 c14 c66


(4.1)

Equation 4.1 shows the matrix of stiffnesses for rhombohedral crystals from equation 3.9. The

elastic constants presented in table 4.3 do not include c66 because it is not an independent elastic

constant; it is a function of c44 and c14.

4.2.3 AIMD

Once suitable bulk properties are calculated and the validity of the DFT parameters confirmed,

further testing involving the threshold displacement events can commence. First, a sampling of

directions along nearest neighbor directions is selected. The nearest neighbor directions are chosen

because of the limitations of the simulations. The higher the index of the direction, the longer the

PKAwill travel in the system before striking another atom. Selecting the nearest neighbors ensures

that an atomic collision can occur and the displacement event will not interact with itself due to

periodic boundary conditions. This becomes more of a concern as PKA energy increases.

To ensure an appropriate number of atoms is used for the simulation, quick calculations are

performed to determine the system energy convergence with simulation cell size. In a defect free
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system using the same DFT parameters as the threshold displacement event, the energy is found

to converge at system sizes somewhere between 120 and 240 atoms. This does not mean that the

defect formation energies converge at these values but rather, that there is a minimum system size

to ensure the minimization of the size effect on the threshold displacement event initially.

To begin the PKA displacement simulation, the relaxed test system is initialized for several

hundred MD steps to ensure that the system has had time to equilibrate. For different numbers of

atoms this can take longer or shorter. Rather, it is run till the average velocity of all similar atoms is

the same. Once the system is initialized, kinetic energy is supplied to the PKA along the specified

direction. The system is monitored to see if the supplied energy is sufficient to form a defect. If the

supplied energy displaces an atom, then another simulation is run with a lower energy to within a

tolerance of 1 eV. The same procedure is repeated if an atom is not displaced except the energy is

increased instead. The system can be let run longer or shorter depending on the desired properties.

For most cases in LiNbO3 , the defect will be produced within the first 200 fs. If the threshold

displacement energy is finally determined, care is taken to ensure that the defect is stable within a

feasible time scale. Usually this requires a supplementary calculation at a longer time scale of up

to a maximum of 2 ps. Longer time scales are, however, problematic because the chain of recoils

produced may have more of a chance to interact with itself due to periodic boundary conditions.

Additionally, to conserve computational time, all calculations are performed at an initial

temperature of 0K and with the NVE ensemble. This ensures that there is no influence of random

velocities and that the system is indeed at its ground state when AIMD calculations begin. The

higher the temperature, the higher the computational cost. Already these are costly to calculate

due to the number of simulations required per threshold displacement event. The NVE ensemble

is chosen because if there is a thermostat in the system, the cell size must be large enough that the

PKA and subsequent recoil events do not interact with the thermostat. This can cause the simulation

cells to become very large in some cases, which is a consideration for this work due to the already

computationally intensive task of running DFT calculations on larger simulation cells.
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Figure 4.2: A hexagonal LiNbO3 unit cell with all atoms shown. Red atoms are O, teal atoms are
Nb, and purple atoms are Li

Directions for threshold displacement simulations are first chosen as either in the basal plane

or normal to the basal plane of the hexagonal unit cell. Then additional directions are chosen

based on nearest neighbor atoms and which directions are likely to produce collisions within the

simulation cell. The hexagonal unit cell is shown in figure 4.2 and the chosen directions are overlaid

in figure 4.3 on a half unit cell.

4.2.4 Defect chemistry

The final threshold displacement simulation produces a defect structure. These defects are

sometimes unintuitive so it is useful to characterize these structures. Additionally, there has been

no work characterizing defects in LiNbO3 or LiTaO3 utilizing an LCAO based code like SIESTA.

All of the analysis so far has utilized plane-wave DFT or empirical calculations partially based

on experimental observation. Since the structure is non-cubic, charged defects are increasingly
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Figure 4.3: Directions used for threshold displacement simulations overlaid onto half of a
hexagonal unit cell along the c axis. Directions 1 and 2 are in the basal plane of the unit cell.
Direction 3 is normal to the basal plane. Directions 4, 5, and 6 are chosen as nearest neighbor
directions for cations or cations.

difficult to calculate, due to the affects of the periodic boundary conditions. Therefore testing is

done to ensure that the size of cell used (at minimum 270 atoms) for defect and Ed calculations is

adequate to eliminate size effects. Beyond 360 atoms, the simulations become too computationally

intensive to perform within any sort of reasonable time limit. Additionally, a more lenient force

tolerance of 0.01eV /Å is required for the structures to converge at all. The higher force tolerances

used on elastic constant calculations are too constraining for calculations to converge.
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4.3 Results

4.3.1 Lattice constant and bulk modulus

The first set of relaxations for LiNbO3 and LiTaO3 is to determine the optimal lattice parameters

based on the chose pseudopotentials. This requires an initial general relaxation of the system

to form a guess for the lattice parameters. Since there are two degrees of freedom in the

rhombohedral lattice parameters, ahexagonal and chexagonal for the hexagonal system or arhombohedral

and αrhombohedral for the rhombohedral system, both parameters need to be probed as shown below.
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Figure 4.4: The fit to the equation of state for LiNbO3 . 4.4a shows the fit to the minimum energy
at each of the selected volumes to the Birch-Murnaghan equation of state. The corresponding
minimum volume is labeled. 4.4b shows the minimum value for α in each volume set from 4.4a

Plotted in figure 4.4a is the minimum energy for each volume selected. Each one of these

minima plotted corresponds to an accompanying value for α in the rhombohedral system. The

values for α are shown in figure 4.4b. Using simple linear interpolation, the minimum volume

corresponds to a minimum value for α which is shown on the figure. Since two of the constraints

are know, it is trivial to calculate the remaining lattice parameter.

Table 4.2 shows the results of the derived lattice constants compared to values available in

the literature. The results presented here are consistent with both experimental and DFT based
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Table 4.2: Lattice constants derived form the equation of state fit in figure 4.4a

reference ahex(Å) chex(Å)

- 5.11 13.58
[82](experiment) 5.15 13.9
[83](DFT) 5.15 13.8

calculations (within 1% of reported values)[82, 84, 83, 14, 18].
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Figure 4.5: The fit to the equation of state for LiTaO3 . 4.4a shows the fit to the minimum enery
at each of the selected volumes to the Birch-Murnaghan equation of state. The corresponding
minimum volume is labeled. 4.5b shows the minimum value for α in each volume set from 4.5a

The lattice constants reported here for LiTaO3 are within 1% of reported experimental and

DFT based results[82, 83]. The reported lattice parameters for LiTaO3 , it should be noted, are

very similar to those reported for LiNbO3 ; this is expected and discussed previously, but the lattice

parameters should be very similar especially at ground state and low temperature. As a first estimate

of the material properties, the lattice constants and volume confirm that the ground state properties

are consistent with known experimental values.
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4.3.2 Elastic constants

Since this work is utilizing newly parameterized pseudopotentials, the forces between atoms need

to be verified to ensure that further simulations are valid. Most work performed on LiNbO3 and

LiTaO3 with respect to their elastic properties do not test the full set of deformation matrices and

use arguments of symmetry to reduce the number of simulations required. The full set is used here

for completeness. It should also be noted that c66 is not an independent elastic constant (it is a

function of c14 and c44) in the rhombohedral structure so it is not reported.

LiNbO3

Table 4.3: Elastic constants for LiNbO3 . Units of 1010 N ·m−2

Ref. c11 c12 c13 c14 c33 c44

this work 24.1 9.2 7.8 0.9 23.2 7.6
experiment [85] 19.8 5.5 6.5 0.79 22.8 6.0
empirical [86] 21.30 8.91 6.90 -3.67 22.28 6.92

DFT [83] 19.69 5.48 6.64 0 22.54 5.88

The DFT results form this work match reasonably well to previously calculated values, as

shown in table 4.3. The values that do not match closely, namely c11 and c12, are likely due

to the stricter tolerances used in this calculation than in the literature. Especially for DFT and

other computational results, there is a lack of information about explicit calculation parameters (the

deformation matrices and force tolerances). Even the material project pymatgen python package

gives a warning when fitting data from VASP and other DFT calculations to carefully consider the

curve being fit[59]. If the deformation is too great, then the fit is poor.

LiTaO3

The results in table 4.4 match more closely with experimental and other DFT results than those

presented from LiNbO3 in table 4.3. The results from LiNbO3 and LiTaO3 in this work are very
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Table 4.4: Elastic constants for LiTaO3 . Units of 1010 N ·m−2

Ref. c11 c12 c13 c14 c33 c44

this work 25.9 8.2 8.1 -0.4 25.2 10.0
experiment 23.3 4.7 8.0 -1.1 27.5 9.4

DFT(PW-GGA) 23.52 6.38 8.77 0 26.41 10.21

similar that the discrepancy is reliant on the Nb atom (the only major difference between the two

structures) as the source of error. Otherwise, if c11 is ignored, the results are consistent.

4.3.3 Threshold displacement simulations

LiNbO3

Table 4.5: Threshold displacement energies from AIMD calculations along various crystallo-
graphic directions described in figure 4.3 for LiNbO3 .

PKA direction Ed (eV) defect structure

Li 1 14 VLi(PKA) + Li(PKA)i
Li 2 22 VLi(PKA) + Li(PKA)i
Li 3 67 VLi(PKA) + Li(PKA)i + VLi + Lii + VNb + Nbi
Li 4 29 VLi(PKA) + Li(PKA)i
Li 5 29 VLi(PKA) + Li(PKA)i
Li 6 36 VLi(PKA) + Li(PKA)i
Nb 1 32 VNb(PKA) + Nb(PKA)i
Nb 2 26 VNb(PKA) + Nb(PKA)i + 2VLi + 2Lii
Nb 3 35 VNb(PKA) + Nb(PKA)i + VNb + Nbi + VLi + Lii
Nb 4 48 VNb(PKA) + Nb(PKA)i + VNb + Nbi + VO + Oi

Nb 5 43 VNb(PKA) + Nb(PKA)i + 2VO + 2Oi

Nb 6 26 VNb(PKA) + Nb(PKA)i + VLi + Lii
O 1 23 VO(PKA) + O(PKA)i + VO + Oi

O 2 24 VO(PKA) + O(PKA)i + VO + Oi

O 3 21 VO(PKA) + O(PKA)i + VO + Oi

O 4 30 VO(PKA) + O(PKA)O + OO + Oi

O 5 18 VO(PKA) + O(PKA)O + Oi

O 6 20 VO(PKA) + O(PKA)i + VO + Oi + 2VLi + 2Lii

Displacements along directions 4 and 5 for Nb PKAs required longer simulations, up to 1.5 ps

but produced similar defect structures compared to the other directions tested. The highest threshold

displacement energies observed are along the [001] for Li. Likely, this is because it immediately
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encounters a Nb atom as the nearest neighbor before rebounding to a high symmetry site in the

opposite direction of the initial PKA momentum. Li also proved easiest to displace (directions 1

and 2, corresponding to recoils in the basal plane) Nb PKAs on the other hand are much more likely

to have similar threshold displacement energies (ranging from 26 to 48 eV).

LiTaO3

Table 4.6: Threshold displacement energies from AIMD calculations along various crystallo-
graphic directions described in figure 4.3 for LiTaO3 .

PKA direction Ed (eV) defect structure

Li 1 6 VLi(PKA) + Li(PKA)i
Li 2 18 VLi(PKA) + Li(PKA)i
Li 3 30 VLi(PKA) + Li(PKA)i + VO + VTa + Oi + Tai
Li 4 13 VLi(PKA) + Li(PKA)i
Li 5 15 VLi(PKA) + Li(PKA)i
Li 6 30 VLi(PKA) + Li(PKA)i
Ta 1 17 VTa(PKA) + Ta(PKA)i + VLi + Lii
Ta 2 21 VTa(PKA) + Ta(PKA)i + 2VLi + 2V O + 2Lii + 2Oi

Ta 3 29 VTa(PKA) + Ta(PKA)i + VTa + Tai + 2VLi + 2Lii
Ta 4 28 VTa(PKA) + Ta(PKA)i + 2VLi + 2Lii
Ta 5 23 VTa(PKA) + Ta(PKA)i
Ta 6 28 VTa(PKA) + Ta(PKA)i + 2VLi + 2Lii
O 1 29 VO(PKA) + O(PKA)O + VO + Oi

O 2 22 VO(PKA) + O(PKA)i
O 3 18 VO(PKA) + O(PKA)i
O 4 60 VO(PKA) + O(PKA)i + VTa + Tai + VLi + Lii
O 5 16 VO(PKA) + O(PKA)i
O 6 50 VO(PKA) + O(PKA)O+ VO + Oi

Table 4.6 shows the measured threshold displacement energy along with the associated defects

in the material for PKAs in LiTaO3 . For most of the lighter ions, Li and O, the final defect state is

quickly reached. Li has lower overallEd values in LiTaO3 comparedwith LiNbO3 , as demonstrated

by the fact that O is the most difficult ion to displace in LiTaO3 , with an energy lower than that

required for producing the highest energy defect in LiNbO3 (Li along [100]).

The data presented in tables 4.5 and 4.6 show similar trends forEd values in bothmaterials. One

value of 120 eV as the threshold displacement energy experimentally determined by Hodgson [15]

is nearly twice as large as the highest observed value (the 67 eV Ed from the Li [001] PKA in
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LiNbO3 ).

4.4 Discussion

4.4.1 Weighted average Ed

If, based on figure 4.3, we weight the resulting threshold displacement energies according to the

total number of similar directions in the structure, we end up with the results in table 4.7.

Table 4.7: Weighted averages for Ed calculations

PKA Ed (eV) source

LiNbO3

Li 29.74 this work
Nb 33.58 this work
O 22.42 this work

Li 25 TRIM[22]
Nb 25 TRIM[22]
O 28 TRIM[22]

LiTaO3

Li 19.26 this work
Ta 24.42 this work
O 36.79 this work

Average threshold displacement energy values provided in table 4.7 agree well with the values

used for TRIM calculations in previously published work on LiNbO3 [22]; if the results are too

dissimilar, the calculations from TRIM would not match experimental results well. In general,

based on the information in table 4.7, the trend is that cations (Li and Ta) are easier to displace

in LiTaO3 than cations (Li and Nb) in LiTaO3 . Anions (O) in both structures follow the opposite

trend, where it is easier to displace an O in LiNbO3 than it is in LiTaO3 . Since the defect behavior

of O interstitials is more complicated than that of any cations, further inquiry into the exact nature

of these interstitials may be necessary,discussed later. O interstitials are not energetically favorable

so are unlikely to be measured and detected.
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4.4.2 AIMD defects

As detailed in tables 4.5 and 4.6, there are a number of defects produced in eachAIMD simulation– a

Frenkel pair is always formed along with auxiliary defects, usually in the form of additional Frenkel

pairs. Figures 4.10 and 4.6b shows a bar graph of the information in tables 4.5 and 4.6 respectively.
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Figure 4.6: Total number of defect reactions for each threshold displacement simulation. Solid
regions are interstitials, single hatched regions represent vacancies, and double hatched regions are
replacements. Figures 4.6a and 4.6b use different scales.

Overall, there are three types of defect interactions in the Ed events: PKA Frenkel pair

formation, replacement, and auxiliary Frenkel pair formation. Most displacement events produced

either one or two Frenkel pairs. The only replacements involve O in LiNbO3 along directions 4 and

5. Compared to the cations in their respective structures, O forms relatively few defects beyond

the initial Frenkel pair. In some cases there are additional defects like replacements in the case of

directions 4 and 5 for LiNbO3 or additional cation defects in the cases of direction 6 in LiNbO3 and

direction 4 in LiTaO3 . Otherwise, there are only O Frenkel pairs (on average one per Ed event in

LiTaO3 and two per Ed event in LiNbO3 ).

55



Figure 4.7: Location of the observed defects along the c axis as shown by the black atom overlaid
on the hexagonal unit cell (right) and the split O interstitial shown overlaid on the hexagonal unit
cell(left)

4.4.3 Defect configurations

Cations

The primary feature of the heavy cation displacements (Nb or Ta), is the response in the Li sublattice

to the cation interstitial. There is a slight displacement of all surrounding Li ions to compensate for

the larger interstitial. This displacement occurs along the direction normal to the basal plane. The

site is marked in figure 4.7The largest amount of free space is along these planes so the displacement

in this manner makes sense– the Li ions move closer to the high symmetry site rather than into

the site. Oxygen atoms stay on their lattice sites for the most part in these simulations. Oxygen

atoms are more strongly attached to the larger cation species due to the larger charge difference.

For comparison between LiNbO3 and LiTaO3 , the Li interstitial resides at 2.20Å along the c axis

whereas the Nb and Ta interstitials reside slightly lower at 2.03Å.

There are no replacement interactions observed for any cation displacement event. As shown

in prior DFT work, there needs to be compensating Li vacancies for an Nb or Ta defect to occupy

an Li site. Since there are no compensating Li compositional vacancies present in the structure,

there are no replacement events. The large volume of interstitial sites facilitates this process as it is
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more energetically favorable to come to rest at an interstitial site than at a higher energy displaced

defect site.

Whenever there is a large energy supplied to the system along the c-axis, there is a corresponding

displacement and return of a large amount of Li in the system. They will move towards the high

symmetry interstitial site and then back to their original lattice site.

Anions

Figure 4.8: Close up and rotated version of the split oxygen interstitial in figure 4.7

Anion displacements are more complicated than cation displacements due to the larger number

of possible defect sites. The structure displayed in figure 4.8 shows the close up version of one

of the configurations for O interstitials in LiNbO3 and LiTaO3 . In LiNbO3 and LiTaO3 it forms

an angle with the c axis of 33.5◦ . The pair is not centered on the original lattice site, being offset

slightly. There are therefore six total configurations for this defect– one at each lattice site, and one

for each offset, left or right, which changes the offset angle to -33.5◦. The exact positions of the

atoms comprising the split interstitial in LiNbO3 are x1 = 1.24Å, y1 = −0.33Å, and z1 = 1.50Å

for the first O and x2 = 1.92Å, y2 = 0.35Å, and z1 = 0.33Å for the second O. If there is enough

energy in the system, there may be some oscillation of the spacing between the split interstitial so
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the exact bond length is subject to change during the simulation. The atom positions reported for

the O interstitials are after relaxation to ensure that this vibration is not present.

4.4.4 Defect chemistry

Table 4.8: Total energy for each compound (per formula unit) near and at the stoichiometric
composition on the phase diagram for LiTaO3 and LiNbO3

Compound energy (eV)

O2 gas -430.76
Li metal (FCC) -7.7095
Nb metal (FCC) -143.00
Ta metal (FCC) -142.35

Li2O -452.38
Nb2O5 -2464.6
NbO2 -1014.0
TaO -572.84
Ta2O5 -2451.9

LiNbO3 -1459.7
LiTaO3 -1455.0

The first step in calculating defect chemistry for the various materials analyzed is to determine

the reference states for each chemical compound that is close in composition to either LiNbO3 or

LiTaO3 . Then the energy per formula unit of each of these compounds is calculated for their

ground state configure (reported in table 4.8). These ground state energies per formula unit are

then used to calculate the energy per atom for each specie at the various points on their respective

phase diagrams.

LiNbO3

Taking the chemical potentials from table 4.8, the formation energies of various defects along points

A-F in figure 4.9 can be calculated. The main reason for selecting these points in the phase diagram

is for easy comparison to literature and to verify the formation energies at conditions similar to the
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Figure 4.9: Schematic representation of the LiNbO3 phase diagram with points (A-F) of interest
labeled.

environment of commercially available crystals used in experiments.

Table 4.9: Total energy for each compound along with the chemical potential in each species at
various points along the phase diagram for LiNbO3

Condition point µLi (eV) µNb (eV) µO (eV)

Stoich. -8.79 -140.0 -427.52
2µNb + 5µO = µNb2O5(bulk) ,µO = µO(bulk) A -12.059 -155.378 -430.762
2µNb + 5µO = µNb2O5(bulk), µNb + 2µo = µNbO2(bulk) B -9.171 -140.935 -436.539
µNb + 2µO = µNbO2(bulk), µNb = µNb(bulk) C -10.205 -143.003 -435.505
µLi = µLi(bulk), µNb = µNb(bulk) D -7.704 -143.003 -436.338
2µLi + µO = µLi2O(bulk), µLi = µLi(bulk) E -7.704 -141.079 -436.980
2µLi + µO = µLi2O(bulk), µO = µO(bulk) F -10.813 -156.624 -430.762

The chemical potentials reported in table 4.9 are broadly consistent with previous DFT

based studies in LiNbO3 . The exact numbers are not the same, as to be expected since it

is a comparison between LCAO based DFT and PW based DFT[48] and the pseudopotentials

differ. The trend however, is the same with defects demonstrating a similar trend. Another

major difference from literature values could be due to the larger simulation cell sizes used here.

Most DFT work performed on LiNbO3 has utilized smaller system sizes (60-180 atoms, and 270

atoms)[13, 14, 19, 18]. Based on tests performed with the easiest defect to calculate, Li interstitials,
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it became clear that the size of the system is required to be at least 270 atoms to eliminate influence

of charge effects. Even larger system sizes are preferable which is the reason for the larger systems

of 360 atoms used for Ed calculations.
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Figure 4.10: Defect formation energies for various types of defects in LiNbO3 at the composition
point B in figure figure 4.9

Charged defect formation energies reported in figure 4.10 shows the same trend as reported

before. Larger simulation cells allows for the complete relaxation of systems ( within a force

tolerance of 1 × 10−2 ev
Å ). The formation energies suggest that any Nb vacancy is energetically

unfavorable, meaning it will either recombine or migrate through the system to form larger scale

defects at defect sinks. Under irradiation, point defect production, further research needs to be

conducted into the migration behavior of these defects to determine the defect configuration.

LiTaO3

Often times work is done in parallel on LiTaO3 and LiNbO3 due to their compositional and chemical

similarities. They are sometimes used in a mixture of the two compounds to tailor properties to the

engineering task at hand. Because of this, the same procedures for determining defect formation

in LiNbO3 translate easily to LiTaO3 , with the exception thatNbO2 has no similar structure in the

LiTaO3 phase diagram (compare figure 4.9 to figure 4.11) so TaO is used instead.
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Figure 4.11: Schematic representation of the LiTaO3 phase diagram with points (A-F) of interest
labeled.

Table 4.10: Total energy for each compound along with the chemical potential in each species at
various points along the phase diagram for LiTaO3

Condition point µLi (eV) µTa (eV) µO (eV)

2µTa + 5µO = µTa2O5(bulk) ,µO = µO(bulk) A -13.685 -149.034 -430.762
2µTa + 5µO = µTa2O5(bulk), µTa + µo = µTaO(bulk) B -11.365 -137.434 -435.402
µTa + µO = µTaO(bulk), µTa = µTa(bulk) C -21.214 -142.358 -430.477
µLi = µLi(bulk), µTa = µTa(bulk) D -7.704 -142.358 -434.981
2µLi + µO = µLi2O(bulk), µLi = µLi(bulk) E -7.704 -136.361 -436.980
2µLi + µO = µLi2O(bulk), µO = µO(bulk) F -10.813 -151.906 -430.762

Comparing tables 4.9 and 4.10 shows that the chemical potentials of both materials are very

similar (with a few eV of each other). When the atoms are bonded to each other in a crystal lattice,

it is expected that their valence electrons are similar if not nearly identical configurations. The

main difference between the materials should come from the mass of the atoms involved.

From figure 4.12, it can be seen that, much like in LiNbO3 in figure 4.10, the heavy cation

(Ta) vacancies are energetically unfavorable. If these defects are produced during threshold

displacement events, it suggests that they will either migrate or aggregate together in the structure

contributing to larger scale structural changes. Longer time scales need to be probed for these

interactions. As stated in the introduction, there are no suitable classical MD potentials for working

61



−10 −8 −6 −4 −2 0
Ef (Fermi energy eV)

−20

−15

−10

−5

0

5

10

15

20

de
fe

ct
fo

rm
at

io
n

en
er

gy
(e

V
)

0 -1 0+1
0+2

0 -2

0 -2
-5

0
+3

+5

VLi

Lii
VO

Oi

VTa

Tai

Figure 4.12: Defect formation energies for various types of defects in LiTaO3 corresponding to
composition point B in figure 4.11

with LiNbO3 or LiTaO3 defect structures. Either larger and longer scale ab initio calculations need

to be made on specific defects (there have been recent advances improving the efficiency of the

SIESTA code) or new MD potentials need to be developed. On the other hand, O0 vacancies and

neutral cation interstitials are much more energetically favorable, with a defect formation energy

closer to 0 eV in both LiNbO3 and LiTaO3 as seen in figures 4.12 and 4.10.

4.5 Conclusion

LiNbO3 and LiTaO3 are tested in parallel to determine pseudopotential suitability through predicted

material properties. Then the minimum energy configurations are used to calculate directionally

dependent threshold displacement energies. The average values for LiNbO3 are 29.7 eV for Li, 33.6

eV for Nb, and 22.4 eV for O. The average values for LiTaO3 are 19.3 eV for Li, 24.4 eV for Ta

and 36.79 eV for O. Broadly speaking, the cation defects are more easily produced in LiTaO3 and

the anion defects are more easily produced in LiNbO3 .

The resulting defect structures are then analyzed to determine their formation energies. The

most energetically unfavorable defects produced are the neutrally charged large cation (Nb and
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Ta) vacancies. O vacancies in both materials had low formation energies; the color centers from

these vacancies in the intrinsic and irradiated materials obscure the observation of other defects

experimentally. Overall, the interstitials prefer two orientations, one for cations and one for anions.

Cations reside at the high symmetry site between coordinating octohedra on the c-axis. Anions form

split interstitials, preferring to orient on one of the oxygen atoms between Li and the heavier cation.

The split interstitial has not been previously well described in literature as most work has focused

on oxygen vacancies and cation defect clusters.
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Chapter 5

Conclusions

5.1 MgO

5.1.1 Material properties

Serving as a representative model material for working with the SIESTA code, MgO is used to

determine the directionally dependent threshold displacement energies and defect properties of a

system. The first step is to probe material properties like lattice constants, bulk modulus, and

elastic constants, as these are reasonable indicators of the code’s representation of inter-atomic

forces. Once the results from these calculations are confirmed and compared with the results

from experiment and other ab initio based calculations, the threshold displacement energies are

calculated.

5.1.2 Threshold displacement events

The general trend in ab intio calculations is that they under estimate the threshold displacement

energies in a system. The results for MgO demonstrate this trend quite clearly, in addition to

confirming the varieties of defects formed. Only two types of interstitials are observed in all

simulations. Either a body centered cation defect or a split anion defect along a face diagonal.

Both types of defect have been reported in defect formation calculations, so no new structures are

found in the MgO system.
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5.1.3 Defects and defect properties

An analysis of all observed defect structures from the AIMD simulations showed good agreement

with defect studies from other work on MgO. MgO is a good test system for these types of

calculations because, at least for O defects, it prefers either a doubly charged defect or a neutral

defect depending on the Fermi energy of the system. Mg defects are not well represented in DFT

codes currently, but they are included to demonstrate the techniques used later on.

5.2 LiNbO3 and LiTaO3

5.2.1 Material properties

The more complicated structures of LiTaO3 and LiNbO3 require more in depth testing to determine

the basic material properties. The mechanical properties provide a reasonable estimate for how

the pseudopotentials represent forces between atoms. In particular the c11 and c12 directions are

not particularly well represented in LiNbO3 with values of 198 GPa and 55 GPa respectively.

LiTaO3 shows much better agreement with prior DFT and experimental work. The two materials

also demonstrate very similar material properties; especially those based off the inter-atomic forces

like lattice parameter, bulk modulus, and elastic properties.

5.2.2 Threshold displacement energies

The lowest energy required to displace an atom in any system is Li in LiTaO3 ; it required only

6 eV to displace the atom from it’s lattice site. The average threshold displacement energies

determined fromweighting based on directional multiplicity are in reasonable agreement with those

used to calculate damage from TRIM and related methods. The highest value for Ed is 67 eV in

LiNbO3 along the c-axis. The major differences in the maximum and minimum Ed for the same

PKA species in the two materials along different directions illustrates that the key difference is

based on the interaction with the heavier cation (Nb or Ta).
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5.2.3 Defects and defect properties

Cation defects produced agree well with the configurations reported previously, but anion defects

are more complicated and prefer to form split interstitials. The cation interstitials where all located

at the high symmetry site between the coordinating O octohedra. The anion defects preferred a

split configuration with the two oxygen atoms aligning roughly 33.5◦ from the c-axis in most cases,

slightly offset from the original lattice site. In total this provides for 6 possible defect configurations

to describe the same type of split interstitial. Formation energies revealed that of all defects, Nb and

Ta vacancies are extremely energetically unfavorable. The most favorable defects are O vacancies

and Li interstitials in both materials, having formation energies close to zero. The result is that

a high concentration of intrinsic O defects is expected (and observed), obscuring measurement of

the other cation defects (particularly the color centers produced from cation defects). The cation

vacancies tend to either migrate toward defect sinks, recombine, or form additional defect clusters

(for instance, the reported NbLi antisite defect configurations). The larger defects that act as sinks

for point defects could then become observable in the resulting post-irradiation material.
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