312 research outputs found

    CO-FREE Alternative Test Products for Copper Reduction in Agriculture

    Get PDF
    The project CO-FREE (2012-2016) aimed to develop strategies to replace/reduce copper use in organic, integrated and conventional farming. CO-FREE alternative test products (CTPs) were tested and integrated together with decision support systems, disease-tolerant varieties, and innovative breeding goals (ideotypes) into improved management strategies. CO-FREE focused on apple/apple scab (Venturia inaequalis), grape/downy mildew (Plasmopara viticola), and tomato and potato/late blight (Phytophthora infestans). Starting point of the project were ten CTPs with direct or indirect modes of action including Trichoderma atroviride SC1 and protein extract SCNB, Lysobacter spp., yeast-based derivatives, Cladosporium cladosporioides H39, the oligosaccharidic complex COS-OGA, Aneurinibacillus migulanus and Xenorhabdus bovienii, sage (Salvia officinalis) extract, liquorice (Glycyrrhiza glabra) extract, PLEX- and seaweed plant extracts. As the project progressed, further promising CTPs were included by the partners. Field trials were performed in different European countries in 2012-2015 following EPPO standards. In the first years, stand-alone applications of CTPs were tested. In the following years these were integrated into complete strategies. Effects on main and further diseases, on yield and on non-target organisms were assessed. Here, field trial results with CTPs are summarized

    E-β-Ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera)

    Get PDF
    Background: In honey bee colony, the brood is able to manipulate and chemically control the workers in order to sustain their own development. A brood ester pheromone produced primarily by old larvae (4 and 5 days old larvae) was first identified as acting as a contact pheromone with specific effects on nurses in the colony. More recently a new volatile brood pheromone has been identified: E-β-ocimene, which partially inhibits ovary development in workers. [br/] Methodology and Principal Finding: Our analysis of E-β-ocimene production revealed that young brood (newly hatched to 3 days old) produce the highest quantity of E-b-ocimene relative to their body weight. By testing the potential action of this molecule as a non-specific larval signal, due to its high volatility in the colony, we demonstrated that in the presence of E-β-ocimene nest workers start to forage earlier in life, as seen in the presence of real brood. [br/] Conclusions/Significance: In this way, young larvae are able to assign precedence to the task of foraging by workers in order to increase food stores for their own development. Thus, in the complexity of honey bee chemical communication, E-β- ocimene, a pheromone of young larvae, provides the brood with the means to express their nutritional needs to the workers

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    The αGal Epitope of the Histo-Blood Group Antigen Family Is a Ligand for Bovine Norovirus Newbury2 Expected to Prevent Cross-Species Transmission

    Get PDF
    Among Caliciviridae, the norovirus genus encompasses enteric viruses that infect humans as well as several animal species, causing gastroenteritis. Porcine strains are classified together with human strains within genogroup II, whilst bovine norovirus strains represent genogroup III. Various GI and GII human strains bind to carbohydrates of the histo-blood group family which may be shared among mammalian species. Genetic relatedness of human and animal strains as well as the presence of potentially shared ligands raises the possibility of norovirus cross-species transmission. In the present study, we identified a carbohydrate ligand for the prototype bovine norovirus strain Bo/Newbury2/76/UK (NB2). Attachment of virus-like particles (VLPs) of the NB2 strain to bovine gut tissue sections showed a complete match with the staining by reagents recognizing the Galα1,3 motif. Alpha-galactosidase treatment confirmed involvement of a terminal alpha-linked galactose. Specific binding of VLPs to the αGal epitope (Galα3Galβ4GlcNAcβ-R) was observed. The binding of Galα3GalαOMe to rNB2 VLPs was characterized at atomic resolution employing saturation transfer difference (STD) NMR experiments. Transfection of human cells with an α1,3galactosyltransferase cDNA allowed binding of NB2 VLPs, whilst inversely, attachment to porcine vascular endothelial cells was lost when the cells originated from an α1,3galactosyltransferase KO animal. The αGal epitope is expressed in all mammalian species with the exception of the Hominidaea family due to the inactivation of the α1,3galactosyltransferase gene (GGTA1). Accordingly, the NB2 carbohydrate ligand is absent from human tissues. Although expressed on porcine vascular endothelial cells, we observed that unlike in cows, it is not present on gut epithelial cells, suggesting that neither man nor pig could be infected by the NB2 bovine strain

    Progressive dementia associated with ataxia or obesity in patients with Tropheryma whipplei encephalitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tropheryma whipplei</it>, the agent of Whipple's disease, causes localised infections in the absence of histological digestive involvement. Our objective is to describe <it>T. whipplei </it>encephalitis.</p> <p>Methods</p> <p>We first diagnosed a patient presenting dementia and obesity whose brain biopsy and cerebrospinal fluid specimens contained <it>T. whipplei </it>DNA and who responded dramatically to antibiotic treatment. We subsequently tested cerebrospinal fluid specimens and brain biopsies sent to our laboratory using <it>T. whipplei </it>PCR assays. PAS-staining and <it>T. whipplei </it>immunohistochemistry were also performed on brain biopsies. Analysis was conducted for 824 cerebrospinal fluid specimens and 16 brain biopsies.</p> <p>Results</p> <p>We diagnosed seven patients with <it>T. whipplei </it>encephalitis who demonstrated no digestive involvement. Detailed clinical histories were available for 5 of them. Regular PCR that targeted a monocopy sequence, PAS-staining and immunohistochemistry were negative; however, several highly sensitive and specific PCR assays targeting a repeated sequence were positive. Cognitive impairments and ataxia were the most common neurologic manifestations. Weight gain was paradoxically observed for 2 patients. The patients' responses to the antibiotic treatment were dramatic and included weight loss in the obese patients.</p> <p>Conclusions</p> <p>We describe a new clinical condition in patients with dementia and obesity or ataxia linked to <it>T. whipplei </it>that may be cured with antibiotics.</p
    corecore