10 research outputs found

    Managing Choice Uncertainties in Life-Cycle Assessment as a Decision-Support Tool for Building Design: A Case Study on Building Framework

    No full text
    To establish a circular economy in society, it is crucial to incorporate life-cycle studies, such as life-cycle assessment (LCA), in the design process of products in order to mitigate the well-recognized problem of the design paradox. The aim of the study was to provide means in a structured way to highlight choice uncertainty present in LCA when used as decision support, as well as to mitigate subjective interpretations of the numerical results leading to arbitrary decisions. The study focused on choices available when defining the goal and scope of a life-cycle assessment. The suggested approach is intended to be used in the early design phases of complex products with high levels of uncertainty in the product life-cycle. To demonstrate and evaluate the approach, a life-cycle assessment was conducted of two design options for a specific building. In the case study two types of building frameworks were compared from an environmental perspective by calculating the global warming potential, eutrophication potential, acidification potential, stratospheric ozone depletion potential and photochemical oxidants creation potential. In the study, a procedure named the Decision Choices Procedure (DCP) was developed to improve LCA as an effective tool for decision support concerning design alternatives when less information is available. The advantages and drawbacks of the proposed approach are discussed to spur further improvements in the use of LCA as a decision-support tool

    Life Cycle Assessment of an Office Building Based on Site-Specific Data

    No full text
    Life cycle assessment (LCA) is an established method to assess the various environmental impacts associated with all the stages of a building. The goal of this project was to calculate the environmental releases for a whole office building and investigate the contribution in terms of environmental impact for different parts of the building, as well as the impact from different stages of the life cycle. The construction process was followed up during production and the contractors provided real-time data on the input required in terms of building products, transport, machinery, energy use, etc. The results are presented for five environmental impact categories and, as expected, materials that constitute the main mass of the building and the energy used during operation contribute the largest share of environmental impact. It is usually difficult to evaluate the environmental impact of the materials in technical installations due to the lack of data. However, in this study, the data were provided by the contractors directly involved in the construction and can, therefore, be considered highly reliable. The results show that materials for installations have a significant environmental impact for four of the environmental impact categories studied, which is a noteworthy finding

    The influence of secondary effects on global warming and cost optimization of insulation in the building envelope

    No full text
    The relative environmental impact from the building construction phase is increasing compared to the operation phase for new buildings. Therefore, it is important to consider the complete environmental life cycle of energy improvement measures. Many advanced optimization methods have been developed in recent years to assess building life cycle impact. However, these previous studies have not fully addressed the secondary effects, in other words, indirect effects outside the actual design option. This may lead to conclusions of optimization studies based on misleading calculation results. The main purpose this study was to highlight the relevance of including secondary effects in optimization of building design with respect to global warming potential and cost. This was done by conducting a parameter study of the building envelope insulation thickness with regard to global warming potential and life cycle costs, while considering secondary effects induced by the different design options. Findings from this study show that secondary effects influence the system boundary, algorithm architecture, results and the final conclusions of optimal building design. Omitting secondary effects can thus lead to incorrect decision on optimal solutions with regard to global warming potential and life cycle cost. Therefore, it is therefore important to take them into consideration when performing optimization studies of building design options

    Approach to manage parameter and choice uncertainty in life cycle optimisation of building design : Case study of optimal insulation thickness

    No full text
    In order to mitigate global warming, it is important to decrease the climate impact from the building stock, which accounts for 39% of the GHG emissions in Europe. An extensive portion of these emissions are generated from the heating of buildings, but emissions also occur from the production of building materials. It is therefore important to find building design solutions that consider both production and operation and maintenance in order to minimise the climate impact of a building during its entire lifetime. At the same time, the production of buildings has to be cost-efficient. In the design of buildings, both climate impact and cost must be evaluated in order to make well-supported decisions. The overall aim of this study was to develop a procedure to facilitate using life cycle studies as decision support for building design. The presented approach will provide a structured means to manage choice and parameter uncertainty when life cycle studies are used as decision support in order to optimise building design. There are many uncertainties in the design phase of buildings, and the approach is demonstrated here in a case study of insulation thickness in the building envelope. The results can be used to support decisions on where to effectively make improvements when subjective choices and parameter uncertainties are considered in the study. The suggested approach will lessen the problem of false certainty in the conclusions drawn, and at the same time provide strong decision support

    Managing choice uncertainties in life-cycle assessment as a decision-support tool for building design : A case study on building framework

    No full text
    To establish a circular economy in society, it is crucial to incorporate life-cycle studies, such as life-cycle assessment (LCA), in the design process of products in order to mitigate the well-recognized problem of the design paradox. The aim of the study was to provide means in a structured way to highlight choice uncertainty present in LCA when used as decision support, as well as to mitigate subjective interpretations of the numerical results leading to arbitrary decisions. The study focused on choices available when defining the goal and scope of a life-cycle assessment. The suggested approach is intended to be used in the early design phases of complex products with high levels of uncertainty in the product life-cycle. To demonstrate and evaluate the approach, a life-cycle assessment was conducted of two design options for a specific building. In the case study two types of building frameworks were compared from an environmental perspective by calculating the global warming potential, eutrophication potential, acidification potential, stratospheric ozone depletion potential and photochemical oxidants creation potential. In the study, a procedure named the Decision Choices Procedure (DCP) was developed to improve LCA as an effective tool for decision support concerning design alternatives when less information is available. The advantages and drawbacks of the proposed approach are discussed to spur further improvements in the use of LCA as a decision-support tool

    The importance of including secondary effects when defining the system boundary with life cycle perspective : Case study for design of an external wall

    No full text
    Life cycle assessment and life cycle cost analysis are suitable tools in trying to minimize environmental impact and cost. To get reliable results it is crucial to set up correct system boundaries for the investigation, but it is often difficult to understand a complex products system because of the cascade effects of consequences that can be induced even by small changes. In this paper the effects and consequences evaluation (ECE) method is introduced to systematically identify and organize the effects and consequences for a design change of parts of a complex system. The method is applied in a case study of external wall insulation for a new building to investigate the importance of correct system boundaries. Using the methodical approach in identifying all significant consequences showed that unexpected unit processes can be important when deciding on the relevant system boundary. We also conclude that such processes can have a significant impact on the final results by calculating the change in global warming potential and life cycle cost for the processes affected by the design option

    Experiences with LCA in the Nordic Building Industry – Challenges, Needs and Solutions

    Get PDF
    “NORNET - Innovative use of LCA in the development of sustainable building and refurbishment strategies” is a Nordic network aiming at extended and improved use of LCA in the Nordic building sector. The NORNET LCA network has studied the challenges and needs of the Nordic building industry in the development in Building Life Cycle Assessment (LCA). The study applied a semi-structured interview technique with 57 interviewees from the Danish, Finnish, Norwegian and Swedish building sector. The study was conducted using a combination of in-depth phone interviews, email interviews and an online multiple-choice questionnaire. The interviewees represented different stakeholders in the Nordic building industry with varying knowledge of LCA, including building product manufacturers, entrepreneurs, building owners, architects, consultants, organizations and research institutes. The interviewees emphasized the need for a better understanding of the relative significance of different factors and building parts and the need to refine and harmonize the existing building LCA tools and databases. The results from this study provides valuable insight in how the Nordic Building Industry experiences the use of LCA. The results also raises awareness of the issues that are needed to be addressed in order for the industry to accelerate and expand the application of LCA in the near future

    Slutrapport : Framtidens biobaserade byggande och boende

    No full text
    The aim of the project “Biobased building and living for the future” was to create conditions for increased use of bio-based products and services in the construction sector in Sweden and Europe and to increase the competitiveness of the Swedish timber manufacturing industry. The project has shown ways to develop E-commerce, parts of the production where increased digitalization leads to increased capacity and quality, as well as solutions for development of floor systems, external walls and tall timber buildings. The project has shown development opportunities to increase the use of bio-based products that implemented will increase competitiveness. The project has been divided into eleven sub-projects to study the various aspects of external factors, market conditions and business models, process development and product development. Within each sub-project, several workshops have been carried out to jointly evaluate results and decide the next step in the sub-project. Through joint workshops, the partners have also been able to meet and share results across the subprojects and spread knowledge and create networks within the industry. The last part is perceived as very valuable by both the companies and the academy / institute. For the joinery value chain, a current situation analysis has been carried out and shown how the development of E-commerce platforms must be combined with process development in order to have a large effect. The results will be utilized in the companies' strategy work ahead. For the timber building value chain, demonstrators have shown development opportunities for both process and product development. The next step for the companies is to evaluate the various solutions linked to their own production conditions
    corecore