518 research outputs found

    A rational approach to understanding the intelligence potential of Cable News Network (CNN)

    Get PDF
    Cable News Network (CNN) was America's number one source of information during Desert Shield/Desert Storm as well as a critical source of information for the US. Intelligence Community. CNN set the precedence for future conflicts by offering 24 hours coverage most of it live. CNN is also an unique source of information because it has access to people and places which are not available to the Intellligence Community. The strengths and weaknesses of the media are studied in order to develop a method of evaluating the intelligence potential of CNN. Using the theoretical priniciples of Alfred Korzybski and Geraldine Forsberg, a rational approach to understanding the intelligence potential is developedhttp://archive.org/details/rationalapproach00tanaLieutenant, United States NavyApproved for public release; distribution is unlimited

    Intersection rules, dynamics and symmetries

    Full text link
    We consider theories containing gravity, at most one dilaton and form field strengths. We show that the existence of particular BPS solutions of intersecting extremal closed branes select the theories, which upon dimensional reduction to three dimensions possess a simple simply laced Lie group symmetry G. Furthermore these theories can be fully reconstructed from the dynamics of such branes and of their openings. Amongst such theories are the effective actions of the bosonic sector of M-theory and of the bosonic string. The BPS intersecting brane solutions form representations of a subgroup of the group of Weyl reflections and outer automorphisms of the triple Kac-Moody extension G+++ of the G algebra, which cannot be embedded in the overextended Kac-Moody subalgebra G++ characterising the cosmological Kasner solutions.Comment: Latex 30 pages, 3 figure

    The elusive gene for keratolytic winter erythema

    Get PDF
    Keratolytic winter erythema (KWE), also known as Oudtshoorn skin disease, is characterised by a cyclical disruption of normal epidermal keratinisation affecting primarily the palmoplantar skin with peeling of the palms and soles, which is worse in the winter. It is a rare monogenic, autosomal dominant condition of unknown cause. However, due to a founder effect, it occurs at a prevalence of 1/7 200 among South African Afrikaans-speakers. In the mid-1980s, samples were collected from affected families for a linkage study to pinpoint the location of the KWE gene. A genome-wide linkage analysis, using microsatellite markers, identified the KWE critical region on chromosome 8p23.1-p22. Subsequent genetic studies focused on screening candidate genes in this critical region; however, no pathogenic mutations that segregated exclusively with KWE were identified. The cathepsin B (CTSB) and farnesyl-diphosphate farnesyltransferase 1 (FDFT1) genes revealed no potentially pathogenic variants, nor did they show differential gene expression in affected skin. Mutation detection in additional candidate genes also failed to identify the KWE-associated variant, suggesting that the causal variant may be in an uncharacterised functional region. Bioinformatic analysis revealed highly conserved regions within the KWE critical region and a custom tiling array was designed to cover this region and to search for copy number variation. Although the study did not identify a variant that segregates exclusively with KWE, it provided valuable insight into the complex KWE-linked region. Next-generation sequencing approaches are being used to comb the region, but the causal variant for this interesting hyperkeratotic palmoplantar phenotype still remains elusive.

    Modelling ground vibrations induced by harmonic loads

    Get PDF
    A finite-element model combining the frequency domain thin-layer method with paraxial boundary conditions to simulate the semi-infinite extent of a soil medium is presented in this paper. The combined numerical model is used to deal with harmonic vibrations of surface rigid foundations on non-horizontal soil profiles. The model can deal with soil media over rigid bedrock or significant depths of half-space. Structured finite elements are used to mesh simple geometry soil domains, whereas unstructured triangular mesh grids are employed to deal with complex geometry problems. Dynamic responses of homogeneous as well as layered soil profiles are simulated and validated against analytical and approximate solutions. Finally, the model is used to deal with surface ground vibration reduction, in which it is first validated against published results and then followed by an example involving a bridge

    Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds

    Full text link
    We develop quantization techniques for describing the nonassociative geometry probed by closed strings in flat non-geometric R-flux backgrounds M. Starting from a suitable Courant sigma-model on an open membrane with target space M, regarded as a topological sector of closed string dynamics in R-space, we derive a twisted Poisson sigma-model on the boundary of the membrane whose target space is the cotangent bundle T^*M and whose quasi-Poisson structure coincides with those previously proposed. We argue that from the membrane perspective the path integral over multivalued closed string fields in Q-space is equivalent to integrating over open strings in R-space. The corresponding boundary correlation functions reproduce Kontsevich's deformation quantization formula for the twisted Poisson manifolds. For constant R-flux, we derive closed formulas for the corresponding nonassociative star product and its associator, and compare them with previous proposals for a 3-product of fields on R-space. We develop various versions of the Seiberg-Witten map which relate our nonassociative star products to associative ones and add fluctuations to the R-flux background. We show that the Kontsevich formula coincides with the star product obtained by quantizing the dual of a Lie 2-algebra via convolution in an integrating Lie 2-group associated to the T-dual doubled geometry, and hence clarify the relation to the twisted convolution products for topological nonassociative torus bundles. We further demonstrate how our approach leads to a consistent quantization of Nambu-Poisson 3-brackets.Comment: 52 pages; v2: references adde

    T-Duality as a Duality of Loop Group Bundles

    Full text link
    Representing the data of a string compactified on a circle in the background of H-flux in terms of the geometric data of a principal loop group bundle, we show that T-duality in type II string theory can be understood as the interchange of the momentum and winding homomorphisms of the principal loop group bundle, thus giving rise to a new interpretation of T-duality.Comment: 8 pages, latex 2e, new reference added, J.Phys.A: Fast Track Publications (to appear

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Full text link
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Get PDF
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove
    corecore