We develop quantization techniques for describing the nonassociative geometry
probed by closed strings in flat non-geometric R-flux backgrounds M. Starting
from a suitable Courant sigma-model on an open membrane with target space M,
regarded as a topological sector of closed string dynamics in R-space, we
derive a twisted Poisson sigma-model on the boundary of the membrane whose
target space is the cotangent bundle T^*M and whose quasi-Poisson structure
coincides with those previously proposed. We argue that from the membrane
perspective the path integral over multivalued closed string fields in Q-space
is equivalent to integrating over open strings in R-space. The corresponding
boundary correlation functions reproduce Kontsevich's deformation quantization
formula for the twisted Poisson manifolds. For constant R-flux, we derive
closed formulas for the corresponding nonassociative star product and its
associator, and compare them with previous proposals for a 3-product of fields
on R-space. We develop various versions of the Seiberg-Witten map which relate
our nonassociative star products to associative ones and add fluctuations to
the R-flux background. We show that the Kontsevich formula coincides with the
star product obtained by quantizing the dual of a Lie 2-algebra via convolution
in an integrating Lie 2-group associated to the T-dual doubled geometry, and
hence clarify the relation to the twisted convolution products for topological
nonassociative torus bundles. We further demonstrate how our approach leads to
a consistent quantization of Nambu-Poisson 3-brackets.Comment: 52 pages; v2: references adde