680 research outputs found

    Phytoplankton patches at fronts: A model of formation and response to wind events

    Get PDF
    A subsurface patch of chlorophyll is a feature common to many fronts. The dynamics underlying the patch formation are not well understood; however, there appears to be a strong link between the biological and physical dynamics. Here we test the hypothesis that patch formation is a result of wind-forced motions of the front. Frontal responses to transient wind events include acceleration of the surface layers, changes in mixed-layer depth, and excitation of nonlinear oscillations at the front. Such dynamics can affect nutrient fluxes across the pycnocline and the coupling between trophic levels. To test this hypothesis, we developed a two-dimensional coupled mixed-layer/primitive-equation/ecosystem model, which we forced with transient wind events. We explored a range of initial conditions, including the cross-frontal nutrient gradient, the sinking of phytoplankton, the depth of the euphotic zone, and the depth of the front. The model showed the subsurface chlorophyll patch to be dependent on all these factors. The cross-frontal scale of the patch was found to be a historical artifact of past wind events, and so was not strongly related to the scale of the front (given by the Rossby radius of deformation). Winds aligned with the frontal jet weakened the cross-frontal density gradient, causing a flux of nutrients into the warmer waters of the front, and eroding the chlorophyll patch through deep vertical mixing. Winds aligned against the frontal jet enhanced the cross-frontal density gradient and isolated the subsurface patch from vertical mixing. The transient forcing of the fronts led to relatively high f-ratios in the subsurface patches; this enhanced biomass would be invisible to most satellite sensors

    Plankton production in tidal fronts: A model of Georges Bank in summer

    Get PDF
    A two-dimensional (x,z) coupled physical-biological model of the plankton on Georges Bank during the summer was developed. The physical portion included a primitive-equation turbulence-closure model with topography-following σ coordinate. The biological model was a simple N-P-Z model. Tidal forcing at the model boundary generated a well-mixed region on the top of the bank, and strong tidal fronts at the bank edges. Biological fields were homogenized on the bank, while pronounced phytoplankton patches and horizontal gradients in properties developed in the fronts. The biomasses and fluxes of biological variables in the model agreed well with field estimates from Georges Bank. The phytoplankton in the well-mixed region of the bank were found to be nutrient replete, with f ratios of about 0.3. Values up to 0.7 were found for the f ratios in the fronts, where phytoplankton patches were supported by vertical fluxes of nutrients from below the euphotic zone. While the patterns of patchiness in the fronts were stable between tidal periods, the structure of patches and fluxes changed dramatically during a tidal cycle. Enhanced vertical mixing and horizontal gradients formed during a brief period of the tide, accounting for much of the cross-frontal nutrient flux. Sampling in such a dynamic system would be very difficult, and probably miss the essential features

    Dinoflagellate blooms and physical systems in the Gulf of Maine

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1990Numerous studies have shown dinoflagellate blooms to be closely related to density discontinuities and fronts in the ocean. The spatial and temporal patterns of the dinoflagellate population depend on the predominant mode of physical forcing, and its scales of variability. The present study combined field sampling of hydrographic and biological variables to examine the relationship of dinoflagellate population distributions to physical factors along the southwestern cost of the Gulf of Maine. A bloom of Ceratium longipes occurred along this coast during the month of June, 1987. A simple model which coupled along-isopycnal diffusion with the logistic growth equation suggested that the cells had a growth rate of about 0.1 d-1 , and had reached a steady horizontal across-shelf distribution within about 10 d. Fur~her variations in population density appeared to be related to fluctuations of light with periods of -10 d. To our knowledge, this was the first use of this simple diffusion model as a diagnostic tool for quantifying parameters describing the growth and movement of a specific phytoplankton population. Blooms of the toxic dinoflagellate, Alexandrium tamarense have been nearly annual features along the coasts of southern Maine, New Hampshire and Massachusetts since 1972; however the mechanisms controlling the distribution of cells and concomitant shellfish toxicity are relatively poorly understood. Analysis of field data gathered from April to September, 1987-1989, showed that in two years when toxicity was detected in the southern part of this region, A. tamarense cells were apparently transported into the study area between Portsmouth and Cape Ann, Massachusetts, in a coastally trapped buoyant plume. This plume appears to have been formed off Maine by the outflow from the Androscoggin and Kennebec Rivers. Flow rates of these rivers, hydrographic sections, and satellite images suggest that the plume had a duration of about a month, and extended alongshore for several hundred kilometers. The distribution of cells followed the position of the plume as it was influenced by wind and topography. Thus when winds were downwelling-favourable, cells were moved alongshore to the south, and were held to the coast; when winds were upwelling-favourable, the plume sometimes separated from the coast, advecting the cells offshore. The alongshore advection of toxic cells within a coastally trapped buoyant plume can explain the temporal and spatial patterns of shellfish toxicity along the coast. The general observation of a north-to-south temporal trend of toxicity is consistent with the southward advection of the plume. In 1987 when no plume was present, Alexandrium tamarense cells were scarce, and no toxicity was recorded at the southern stations. A hypothesis was formulated explaining the development and spread of toxic dinoflagellate blooms in this region. This plume-advection hypothesis included: source A. tamarense populations in the north, possibly associated with the Androscoggin and Kennebec estuaries; a relationship between toxicity patterns and river flow volume and timing of flow peaks; and a relationship between wind stresses and the distribution of low salinity water and cells. Predictions of the plume-advection hypothesis were tested with historical records of shellfish toxicity, wind speed and direction, and river flow. The predictions tested included the north-south progression of toxic outbreaks, the occurrence of a peak in river flow prior to the PSP events, the relationship of transit time of PSP toxicity along the coast with river flow volume, and the influence of surface wind stress on the timing and location of shellfish toxicity. All the predictions tested were supported by the historical records. In addition it was found that the plume-advection hypothesis explains many details of the timing and spread of shellfish toxicity, including the sporadic nature of toxic outbreaks south of Massachusetts Bay, and the apparently rare occurrence of toxicity well offshore on Nantucket Shoals and Georges Bank.This research was supported by ONR contract N00014-87-K-0007 and ONR grant N00014-89-J-111 to Donald M. Anderson, and NOAA Office of Sea Grant contract NA86AA-D-SG090

    Global surfaces of section in the planar restricted 3-body problem

    Get PDF
    The restricted planar three-body problem has a rich history, yet many unanswered questions still remain. In the present paper we prove the existence of a global surface of section near the smaller body in a new range of energies and mass ratios for which the Hill's region still has three connected components. The approach relies on recent global methods in symplectic geometry and contrasts sharply with the perturbative methods used until now.Comment: 11 pages, 1 figur

    Episodic vertical nutrient fluxes and nearshore phytoplankton blooms in Southern California

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 1673-1688, doi:10.4319/lo.2012.57.6.1673.Three distinct phytoplankton blooms lasting 4–9 d were observed in approximately 15-m water depth near Huntington Beach, California, between June and October of 2006. Each bloom was preceded by a vertical NO3 flux event 6–10 d earlier. NO3 concentrations were estimated using a temperature proxy that was verified by comparison with the limited NO3 observations. The lower–water-column vertical NO3 flux from vertical advection was inferred from observed vertical isotherm displacement. Turbulent vertical eddy diffusivity was parameterized based on the observed background (< 0.3 cycles h−1) stratification and vertical shear in the horizontal currents. The first vertical nitrate flux event in June contained both advective and turbulent fluxes, whereas the later two events were primarily turbulent, driven by shear in the lower part of the water column. The correlation between the NO3 flux and the observed chlorophyll a (Chl a) was maximum (r2 = 0.40) with an 8-d lag. A simple nitrate–phytoplankton model using a linear uptake function and driven with the NO3 flux captured the timing, magnitude, and duration of the three Chl a blooms (skill = 0.61) using optimal net growth rate parameters that were within the expected range. Vertical and horizontal advection of Chl a past the measurement site were too small to explain the observed Chl a increases during the blooms. The vertical NO3 flux was a primary control on the growth events, and estimation of both the advective (upwelled) and turbulent fluxes is necessary to best predict these episodic blooms.California Sea Grant, National Oceanic and Atmospheric Administration, California Coastal Conservancy, National Science Foundation, and the Office of Naval Research supported this research

    The development and validation of the LIMPRINT methodology

    Get PDF
    [Paper two of the LIMPRINT supplement. Lymphatic Research and Biology Supplement. June 2017

    Extremism propagation in social networks with hubs

    No full text
    One aspect of opinion change that has been of academic interest is the impact of people with extreme opinions (extremists) on opinion dynamics. An agent-based model has been used to study the role of small-world social network topologies on general opinion change in the presence of extremists. It has been found that opinion convergence to a single extreme occurs only when the average number of network connections for each individual is extremely high. Here, we extend the model to examine the effect of positively skewed degree distributions, in addition to small-world structures, on the types of opinion convergence that occur in the presence of extremists. We also examine what happens when extremist opinions are located on the well-connected nodes (hubs) created by the positively skewed distribution. We find that a positively skewed network topology encourages opinion convergence on a single extreme under a wider range of conditions than topologies whose degree distributions were not skewed. The importance of social position for social influence is highlighted by the result that, when positive extremists are placed on hubs, all population convergence is to the positive extreme even when there are twice as many negative extremists. Thus, our results have shown the importance of considering a positively skewed degree distribution, and in particular network hubs and social position, when examining extremist transmission

    Increasing water-use efficiency directly through genetic manipulation of stomatal density

    Get PDF
    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max)) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2) atmospheres

    Ecological Transitions in a Coastal Upwelling Ecosystem

    Get PDF
    The southern California Current Ecosystem (CCE) is a dynamic eastern boundary current ecosystem that is forced by ocean-atmosphere variability on interannual, multidecadal, and long-term secular time scales. Recent evidence suggests that apparent abrupt transitions in ecosystem conditions reflect linear tracking of the physical environment rather than oscillations between alternative preferred states. A space-for-time exchange is one approach that permits use of natural spatial variability in the CCE to develop a mechanistic understanding needed to project future temporal changes. The role of (sub)mesoscale frontal systems in altering rates of nutrient transport, primary and secondary production, export fluxes, and the rates of encounters between predators and prey is an issue central to this pelagic ecosystem and its future trajectory because the occurrence of such frontal features is increasing

    New constraints on atmospheric CO2 concentration for the Phanerozoic

    Get PDF
    Earth's atmospheric CO2 concentration (ca) for the Phanerozoic Eon is estimated from proxies and geochemical carbon cycle models. Most estimates come with large, sometimes unbounded uncertainty. Here, we calculate tightly constrained estimates of ca using a universal equation for leaf gas exchange, with key variables obtained directly from the carbon isotope composition and stomatal anatomy of fossil leaves. Our new estimates, validated against ice cores and direct measurements of ca, are less than 1000 ppm for most of the Phanerozoic, from the Devonian to the present, coincident with the appearance and global proliferation of forests. Uncertainties, obtained from Monte Carlo simulations, are typically less than for ca estimates from other approaches. These results provide critical new empirical support for the emerging view that large (~2000-3000 ppm), long-term swings in ca do not characterize the post-Devonian and that Earth's long-term climate sensitivity to ca is greater than originally thought. Key Points A novel CO2 proxy calculates past atmospheric CO2 with improved certainty CO2 is unlikely to have exceeded ~1000 ppm for extended periods post Devonian Earth's long-term climate sensitivity to CO2 is greater than originally thought
    corecore