433 research outputs found

    Pleasure and meaningful discourse: an overview of research issues

    Get PDF
    The concept of pleasure has emerged as a multi-faceted social and cultural phenomenon in studies of media audiences since the 1980s. In these studies different forms of pleasure have been identified as explaining audience activity and commitment. In the diverse studies pleasure has emerged as a multi-faceted social and cultural concept that needs to be contextualized carefully. Genre and genre variations, class, gender, (sub-)cultural identity and generation all seem to be instrumental in determining the kind and variety of pleasures experienced in the act of viewing. This body of research has undoubtedly contributed to a better understanding of the complexity of audience activities, but it is exactly the diversity of the concept that is puzzling and poses a challenge to its further use. If pleasure is maintained as a key concept in audience analysis that holds much explanatory power, it needs a stronger theoretical foundation. The article maps the ways in which the concept of pleasure has been used by cultural theorists, who have paved the way for its application in reception analysis, and it goes on to explore the ways in which the concept has been used in empirical studies. Central to our discussion is the division between the ‘public knowledge’ and the ‘popular culture’ projects in reception analysis which, we argue, have major implications for the way in which pleasure has come to be understood as divorced from politics, power and ideology. Finally, we suggest ways of bridging the gap between these two projects in an effort to link pleasure to the concepts of hegemony and ideology

    Thermal evolution and sintering of chondritic planetesimals III. Modelling the heat conductivity of porous chondrite material

    Full text link
    The construction of models for the internal constitution and the temporal evolution of large planetesimals, the parent bodies of chondrites, requires information on the heat conductivity of the complex mixture of minerals and iron metal found in chondrites. It is attempted to evaluate the heat conductivity of a multi-component mineral mixture and granular medium from the heat conductivities of its mixture components. Random mixtures of solids with chondritic composition and packings of spheres are numerically generated. The heat conduction equation is solved in high spatial resolution for a test cube filled with such matter. From the heat flux through the cube the heat conductivity of the mixture is derived. The model results for porous material are consistent with data for compacted sandstone, but are at odds with measurements for H and L chondrites. The discrepancy is traced back to shock modification of the currently available meteoritic material by impacts on the parent body over the last 4.5 Ga. This causes numerous micro-cracks that act as additional barriers for heat transfer. The void structure in meteorites is different from that which probably existed in the pristine material of the parent bodies. The results obtained for the heat conductivity of the pristine material are used for calculating models for the evolution of the H chondrite parent body which are fitted to the cooling data of a number of H chondrites. The fit to the data good.Comment: 19 pages, 8 figures, accepted by Astronomy & Astrophysic

    The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies

    Get PDF
    The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic

    Rogue diva flows: Aoi Sola's reception in the Chinese media and mobile celebrity

    Get PDF
    Theorizations of celebrity often contend with questions of the constructed nature of star persona. This is more so the case when discussing divas in Japan, as they are subject to a wide range of gender regimes that mould the ways in which their persona is produced and consumed. Contemporary forms of transnationalism in East Asia, however, have created media flows and fan bases that provide new opportunities for Japanese female celebrities to re-construct their star personas, transcending their celebrity status in Japan. Focusing on the case of Aoi Sola, a Japanese adult video actress turned celebrity, this article demonstrates how transnational East Asian flows problematize our static theorization of celebrity. Sola's interactions with her Chinese social media fan base have afforded her a cosmopolitan persona that has been celebrated as a cultural bridge between China and Japan. At the same time, her star persona leaves her vulnerable to re-inscriptions into transnational politics as played out in everyday media flows. This dynamic is best demonstrated in Sola's attempts to quell anti-Japanese sentiment in China as well as in her efforts to reinscribe her star persona using nostalgic associations of cultural similarity and a shared past. Based on analyses of Sola's celebrity trajectory from adult video to online Chinese mediascape Diva, this article suggests that contemporary star persona status is better understood in terms of gender, movement and ‘meshworks’

    A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB4018, doi:10.1029/2011GB004192.A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to larger scale C dynamics within the Arctic system. DIC concentration showed considerable, and synchronous, seasonal variation across these six large Arctic rivers, which have an estimated combined annual DIC flux of 30 Tg C yr−1. By examining the relationship between DIC flux and landscape variables known to regulate riverine DIC, we extrapolate to a DIC flux of 57 ± 9.9 Tg C yr−1for the full pan-arctic basin, and show that DIC export increases with runoff, the extent of carbonate rocks and glacial coverage, but decreases with permafrost extent. This pan-arctic riverine DIC estimate represents 13–15% of the total global DIC flux. The annual flux of selected ions (HCO3−, Na+, Ca2+, Mg2+, Sr2+, and Cl−) from the six largest Arctic rivers confirms that chemical weathering is dominated by inputs from carbonate rocks in the North American watersheds, but points to a more important role for silicate rocks in Siberian watersheds. In the coastal ocean, river water-induced decreases in aragonite saturation (i.e., an ocean acidification effect) appears to be much more pronounced in Siberia than in the North American Arctic, and stronger in the winter and spring than in the late summer. Accounting for seasonal variation in the flux of DIC and other major ions gives a much clearer understanding of the importance of riverine DIC within the broader pan-arctic C cycle.Funding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to SET was provided by an NSERC Postdoctoral Fellowship.2013-06-1

    A global map of mangrove forest soil carbon at 30 m spatial resolution

    Full text link
    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m−3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha−1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies
    • 

    corecore