44 research outputs found

    Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization?

    Get PDF
    Background: Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays. Methodology/Principal Findings: We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog's Phenotype MicroArray (TM) technology and some virulence factor assays. Conclusions/Significance: Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum

    Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments

    Get PDF
    Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out

    The complete genome sequence of Listeria monocytogenes strain S2542 and expression of selected genes under high-pressure processing

    Get PDF
    Objectives The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. Results The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 degrees C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.Peer reviewe

    Anti-Tumor Necrosis Factor α Therapeutics Differentially Affect Leishmania Infection of Human Macrophages

    Get PDF
    Tumor necrosis factor α (TNFα) drives the pathophysiology of human autoimmune diseases and consequently, neutralizing antibodies (Abs) or Ab-derived molecules directed against TNFα are essential therapeutics. As treatment with several TNFα blockers has been reported to entail a higher risk of infectious diseases such as leishmaniasis, we established an in vitro model based on Leishmania-infected human macrophages, co-cultured with autologous T-cells, for the analysis and comparison of anti-TNFα therapeutics. We demonstrate that neutralization of soluble TNFα (sTNFα) by the anti-TNFα Abs Humira®, Remicade®, and its biosimilar Remsima® negatively affects infection as treatment with these agents significantly reduces Leishmania-induced T-cell proliferation and increases the number of infected macrophages. By contrast, we show that blockade of sTNFα by Cimzia® does not affect T-cell proliferation and infection rates. Moreover, compared to Remicade®, treatment with Cimzia® does not impair the expression of cytolytic effector proteins in proliferating T-cells. Our data demonstrate that Cimzia® supports parasite control through its conjugated polyethylene glycol (PEG) moiety as PEGylation of Remicade® improves the clearance of intracellular Leishmania. This effect can be linked to complement activation, with levels of complement component C5a being increased upon treatment with Cimzia® or a PEGylated form of Remicade®. Taken together, we provide an in vitro model of human leishmaniasis that allows direct comparison of different anti-TNFα agents. Our results enhance the understanding of the efficacy and adverse effects of TNFα blockers and they contribute to evaluate anti-TNFα therapy for patients living in countries with a high prevalence of leishmaniasis

    High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes

    Get PDF
    Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.Peer reviewe

    The interaction of Leishmania major parasites with human myeloid cells and its consequence for adaptive immunity

    No full text
    In der vorliegenden Arbeit fokussierten wir uns auf drei verschiedene Aspekte der Leishmanien-Infektion. Wir charakterisierten den Prozess des Zelltods „Apoptose“ bei Parasiten (1), untersuchten die Eignung von Makrophagen und dendritischen Zellen als Wirtszelle für die Entwicklung der Parasiten (2) und analysierten die Konsequenzen der Infektion für die Entstehung einer adaptiven Immunantwort im humanen System. Von zentraler Bedeutung für dieses Projekt war die Hypothese, dass apoptotische Leishmanien den Autophagie-Mechanismus ihrer Wirtszellen ausnutzen, um eine T-Zell-vermittelte Abtötung der Parasiten zu vermindern.rnWir definierten eine apoptotische Leishmanien-Population, welche durch eine rundliche Morphologie und die Expression von Phosphatidylserin auf der Parasitenoberfläche charakterisiert war. Die apoptotischen Parasiten befanden sich zudem in der SubG1-Phase und wiesen weniger und fragmentierte DNA auf, welche durch TUNEL-Assay nachgewiesen werden konnte. Bei der Interaktion der Parasiten mit humanen Makrophagen und dendritischen Zellen zeigte sich, dass die anti-inflammatorischen Makrophagen anfälliger für Infektionen waren als die pro-inflammatorischen Makrophagen oder die dendritischen Zellen. Interessanterweise wurde in den dendritischen Zellen jedoch die effektivste Umwandlung zur krankheitsauslösenden, amastigoten Lebensform beobachtet. Da sowohl Makrophagen als auch dendritische Zellen zu den antigenpräsentierenden Zellen gehören, könnte dies zur Aktivierung der T-Zellen des adaptiven Immunsystems führen. Tatsächlich konnte während der Leishmanien-Infektion die Proliferation von T-Zellen beobachtet werden. Dabei stellten wir fest, dass es sich bei den proliferierenden T-Zellen um CD3+CD4+ T-Zellen handelte, welche sich überraschenderweise als Leishmanien-spezifische CD45RO+ T-Gedächtniszellen herausstellten. Dies war unerwartet, da ein vorheriger Kontakt der Spender mit Leishmanien als unwahrscheinlich gilt. In Gegenwart von apoptotischen Parasiten konnte eine signifikant schwächere T-Zell-Proliferation in Makrophagen, jedoch nicht in dendritischen Zellen beobachtet werden. Da sich die T-Zell-Proliferation negativ auf das Überleben der Parasiten auswirkt, konnten die niedrigsten Überlebensraten in dendritischen Zellen vorgefunden werden. Innerhalb der Zellen befanden sich die Parasiten in beiden Zelltypen im Phagosom, welches allerdings nur in Makrophagen den Autophagie-Marker LC3 aufwies. Chemische Induktion von Autophagie führte, ebenso wie die Anwesenheit von apoptotischen Parasiten, zu einer stark reduzierten T-Zell-Proliferation und dementsprechend zu einem höheren Überleben der Parasiten.rnZusammenfassend lässt sich aus unseren Daten schließen, dass Apoptose in Einzellern vorkommt. Während der Infektion können sowohl Makrophagen, als auch dendritische Zellen mit Leishmanien infiziert und das adaptive Immunsystem aktivert werden. Die eingeleitete T-Zell-Proliferation nach Infektion von Makrophagen ist in Gegenwart von apoptotischen Parasiten reduziert, weshalb sie im Vergleich zu dendritischen Zellen die geeigneteren Wirtszellen für Leishmanien darstellen. Dafür missbrauchen die Parasiten den Autophagie-Mechanismus der Makrophagen als Fluchtstrategie um das adaptive Immunsystem zu umgehen und somit das Überleben der Gesamtpopulation zu sichern. Diese Ergebnisse erklären den Vorteil von Apoptose in Einzellern und verdeutlichen, dass der Autophagie-Mechanismus als potentielles therapeutisches Ziel für die Behandlung von Leishmaniose dienen kann.rnIn this study we focused on three biological aspects of Leishmania infection. We focused (1) on characterizing the cell death process “apoptosis” in parasites, (2) on defining the suitability of human primary macrophages and dendritic cells as host cells for Leishmania parasites and (3) on assessing the consequence of infection for development of an adaptive immune response. Central in this project was the hypothesis that apoptotic Leishmania exploit the host´s autophagy machinery to reduce T cell mediated parasite elimination. rnAmong Leishmania, we defined an apoptotic population, which was characterized by a round shaped morphology and phosphatidylserine exposure. In addition, apoptotic parasites contained less DNA as they were in the SubG1 phase and DNA was fragmented, as assessed by a TUNEL assay. During interaction with human macrophages and dendritic cells, we found the anti-inflammatory macrophages to be more susceptible for infection then proinflammatory macrophages and dendritic cells. Interestingly, in the latter cell type, Leishmania parasites developed most efficiently in the disease propagating amastigote life stage. As both macrophages and dendritic cells are antigen presenting cells, antigens may be presented to activate T cells of the adaptive immune system. Indeed, during Leishmania infection, T cell proliferation was induced. These T cells were characterized as CD3+CD4+ T cells, surprisingly comprising Leishmania specific memory CD45RO+ T cells obtained from previously unexposed individuals. Furthermore, dependent on the apoptotic parasite entry in macrophages – but not in dendritic cells – a significant lower T cell proliferation was observed. As a consequence, proliferation restricted intracellular parasites survival the strongest in dendritic cells. Investigating the intracellular fate of apoptotic parasites, we found them to reside in a phagosome decorated with the autophagy marker LC3 in macrophages – but not in dendritic cells. By linking autophagy to T cell proliferation we demonstrated that chemical induction of autophagy, preceding Leishmania infection, also strongly reduced T cell proliferation and enhanced parasite survival. rnIn all, our data suggest apoptosis also to occur in single-celled organisms. During infection, both macrophages and dendritic cells are susceptible, activating the human adaptive immune system. The induced proliferation is reduced in the presence of apoptotic parasites in macrophages, defining macrophages to be more suitable as host cells to dendritic cells. In macrophages, apoptotic Leishmania misuse the host cells´ autophagy machinery as an immune evasion mechanism, to reduce T cell proliferation by which the overall population´s survival is guaranteed. These findings explain the benefit of apoptosis in a single-celled parasite and define the host´s autophagy pathway as a potential therapeutic target in treating Leishmaniasis.r

    A Diffusion Model to Quantify Membrane Repair Process in Listeria Monocytogenes Exposed to High Pressure Processing based on Fluorescence Microscopy Data

    No full text
    The effects of environmental stresses on microorganisms have been well-studied, and cellular responses to stresses such as heat, cold, acids, and salts have been extensively discussed. Although high pressure processing (HPP) is becoming more popular as a preservation method in the food industry, the characteristics of the cellular damage caused by high pressure are unclear, and the microbial response to this stress has not yet been well-explored. We exposed the pathogen Listeria monocytogenes to HPP (400 MPa, 8 min, 8°C) and found that the high pressure created plasma membrane pores. Using a common staining technique involving propidium iodide (PI) combined with high-frequency fluorescence microscopy, we monitored the rate of diffusion of PI molecules into hundreds of bacterial cells through these pores on days 0, 1, 2, 3, and 4 after pressurization. We also developed a mathematical dynamic model based on mass transfer and passive diffusion laws, calibrated using our microscopy experiments, to evaluate the response of bacteria to HPP. We found that the rate of diffusion of PI into the cells decreased over the 4 consecutive days after exposure to HPP, indicating repair of the pressure-created membrane pores. The model suggested a temporal change in the size of pores until closure. To the best of our knowledge, this is the first time that pressure-created membrane pores have been quantitatively described and shown to diminish with time. In addition, we found that the membrane repair rate in response to HPP was linear, and growth was temporarily arrested at the population level during the repair period. These results support the existence of a progressive repair process in some of the cells that take up PI, which can therefore be considered as being sub-lethally injured rather than dead. Hence, we showed that a subgroup of bacteria survived HPP and actively repaired their membrane pores

    Intracellular pHluorin as Sensor for Easy Assessment of Bacteriocin-Induced Membrane-Damage in Listeria monocytogenes

    Get PDF
    Bacteriocins are antimicrobial peptides naturally produced by many bacteria and were shown to be effective against various pathogens including Listeria monocytogenes. L. monocytogenes is a food-borne pathogen that frequently causes disease outbreaks around the world with fatal outcomes in at-risk individuals. Thus, bacteriocins are a promising solution to prevent contaminations with L. monocytogenes and other microorganisms during food production and preservation. In the present study, we constructed L. monocytogenes EGD-e/pNZ-Phelp-pHluorin, a strain that constitutively expresses the pH-sensitive fluorescent protein pHluorin, as a sensor strain to detect disruption of the pH gradient by the membrane-damaging activity of bacteriocins. The ratiometric fluorescence properties of pHluorin were validated both in crude extracts and permeabilized cells of this sensor strain. L. monocytogenes EGD-e/pNZ-Phelp-pHluorin was used to assess membrane damaging activity of the bacteriocins nisin A and pediocin PA-1 and to determine the minimal concentrations required for full disruption of the pH gradient across the membrane. Moreover, the sensor strain proved useful to analyze the presence of compounds affecting membrane integrity in supernatants of a nisin Z-producing Lactococcus lactis strain at different timepoints during growth. Supernatants of this strain that were active in disrupting the pH gradient across the membrane were also shown to inhibit growth of L. monocytogenes. In summary, the presented results suggest that the generated sensor strain is a convenient, fast and reliable tool to identify and characterize novel bacteriocins and other compounds that target membrane integrity.publishedVersion© 2018 Crauwels, Schäfer, Weixler, Bar, Diep, Riedel and Seibold. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms
    corecore