11 research outputs found

    A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5

    Full text link
    In this white paper, we present an experimental road map for spectroscopic experiments beyond DESI. DESI will be a transformative cosmological survey in the 2020s, mapping 40 million galaxies and quasars and capturing a significant fraction of the available linear modes up to z=1.2. DESI-II will pilot observations of galaxies both at much higher densities and extending to higher redshifts. A Stage-5 experiment would build out those high-density and high-redshift observations, mapping hundreds of millions of stars and galaxies in three dimensions, to address the problems of inflation, dark energy, light relativistic species, and dark matter. These spectroscopic data will also complement the next generation of weak lensing, line intensity mapping and CMB experiments and allow them to reach their full potential.Comment: Contribution to Snowmass 202

    The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors

    No full text
    International audienceChronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain

    A spectroscopic road map for cosmic frontier: DESI, DESI-II, Stage-5

    No full text
    International audienceIn this white paper, we present an experimental road map for spectroscopic experiments beyond DESI. DESI will be a transformative cosmological survey in the 2020s, mapping 40 million galaxies and quasars and capturing a significant fraction of the available linear modes up to z=1.2. DESI-II will pilot observations of galaxies both at much higher densities and extending to higher redshifts. A Stage-5 experiment would build out those high-density and high-redshift observations, mapping hundreds of millions of stars and galaxies in three dimensions, to address the problems of inflation, dark energy, light relativistic species, and dark matter. These spectroscopic data will also complement the next generation of weak lensing, line intensity mapping and CMB experiments and allow them to reach their full potential

    A spectroscopic road map for cosmic frontier: DESI, DESI-II, Stage-5

    No full text
    International audienceIn this white paper, we present an experimental road map for spectroscopic experiments beyond DESI. DESI will be a transformative cosmological survey in the 2020s, mapping 40 million galaxies and quasars and capturing a significant fraction of the available linear modes up to z=1.2. DESI-II will pilot observations of galaxies both at much higher densities and extending to higher redshifts. A Stage-5 experiment would build out those high-density and high-redshift observations, mapping hundreds of millions of stars and galaxies in three dimensions, to address the problems of inflation, dark energy, light relativistic species, and dark matter. These spectroscopic data will also complement the next generation of weak lensing, line intensity mapping and CMB experiments and allow them to reach their full potential

    Astro2020 APC White Paper: The MegaMapper: a z > 2 Spectroscopic Instrument for the Study of Inflation and Dark Energy

    No full text
    MegaMapper is a proposed ground-based experiment to measure Inflation parameters and Dark Energy from galaxy redshifts at 2<z<5. A 6.5-m Magellan telescope will be coupled with DESI spectrographs to achieve multiplexing of 20,000. MegaMapper would be located at Las Campanas Observatory to fully access LSST imaging for target selection

    The MegaMapper: A Stage-5 Spectroscopic Instrument Concept for the Study of Inflation and Dark Energy

    No full text
    In this white paper, we present the MegaMapper concept. The MegaMapper is a proposed ground-based experiment to measure Inflation parameters and Dark Energy from galaxy redshifts at 2<z<52<z<5. In order to achieve path-breaking results with a mid-scale investment, the MegaMapper combines existing technologies for critical path elements and pushes innovative development in other design areas. To this aim, we envision a 6.5-m Magellan-like telescope, with a newly designed wide field, coupled with DESI spectrographs, and small-pitch robots to achieve multiplexing of at least 26,000. This will match the expected achievable target density in the redshift range of interest and provide a 10x capability over the existing state-of the art, without a 10x increase in project budget

    Overview of the DESI Legacy Imaging Surveys

    Get PDF
    The DESI Legacy Imaging Surveys (http://legacysurvey.org/) are a combination of three public projects (the Dark Energy Camera Legacy Survey, the Beijing–Arizona Sky Survey, and the Mayall z-band Legacy Survey) that will jointly image ≈14,000 deg2 of the extragalactic sky visible from the northern hemisphere in three optical bands (g, r, and z) using telescopes at the Kitt Peak National Observatory and the Cerro Tololo Inter-American Observatory. The combined survey footprint is split into two contiguous areas by the Galactic plane. The optical imaging is conducted using a unique strategy of dynamically adjusting the exposure times and pointing selection during observing that results in a survey of nearly uniform depth. In addition to calibrated images, the project is delivering a catalog, constructed by using a probabilistic inference-based approach to estimate source shapes and brightnesses. The catalog includes photometry from the grz optical bands and from four mid-infrared bands (at 3.4, 4.6, 12, and 22 μm) observed by the Wide-field Infrared Survey Explorer satellite during its full operational lifetime. The project plans two public data releases each year. All the software used to generate the catalogs is also released with the data. This paper provides an overview of the Legacy Surveys project
    corecore