11 research outputs found

    Disruption of d-alanyl esterification of Staphylococcus aureus cell wall teichoic acid by the β-lactam resistance modifier (−)-epicatechin gallate

    Get PDF
    The naturally occurring polyphenol (-)-epicatechin gallate (ECg) increases oxacillin susceptibility in mecA-containing strains of Staphylococcus aureus. Decreased susceptibility to lysostaphin suggests alterations to the wall teichoic acid (WTA) content of ECg-grown bacteria. Changes in WTA structure in response to ECg were determined.Peer reviewe

    Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance

    Get PDF
    Many important cellular processes are performed by molecular machines, composed of multiple proteins that physically interact to execute biological functions. An example is the bacterial peptidoglycan (PG) synthesis machine, responsible for the synthesis of the main component of the cell wall and the target of many contemporary antibiotics. One approach for the identification of essential components of a cellular machine involves the determination of its minimal protein composition. Staphylococcus aureus is a Gram-positive pathogen, renowned for its resistance to many commonly used antibiotics and prevalence in hospitals. Its genome encodes a low number of proteins with PG synthesis activity (9 proteins), when compared to other model organisms, and is therefore a good model for the study of a minimal PG synthesis machine. We deleted seven of the nine genes encoding PG synthesis enzymes from the S. aureus genome without affecting normal growth or cell morphology, generating a strain capable of PG biosynthesis catalyzed only by two penicillin-binding proteins, PBP1 and the bi-functional PBP2. However, multiple PBPs are important in clinically relevant environments, as bacteria with a minimal PG synthesis machinery became highly susceptible to cell wall-targeting antibiotics, host lytic enzymes and displayed impaired virulence in a Drosophila infection model which is dependent on the presence of specific peptidoglycan receptor proteins, namely PGRP-SA. The fact that S. aureus can grow and divide with only two active PG synthesizing enzymes shows that most of these enzymes are redundant in vitro and identifies the minimal PG synthesis machinery of S. aureus. However a complex molecular machine is important in environments other than in vitro growth as the expendable PG synthesis enzymes play an important role in the pathogenicity and antibiotic resistance of S. aureus

    Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers.

    Get PDF
    Galloyl catechins, in particular (-)-epicatechin gallate (ECg), have the capacity to abrogate β-lactam resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA); they also prevent biofilm formation, reduce the secretion of a large proportion of the exoproteome and induce profound changes to cell morphology. Current evidence suggests that these reversible phenotypic traits result from their intercalation into the bacterial cytoplasmic membrane. We have endeavoured to potentiate the capacity of ECg to modify the MRSA phenotype by stepwise removal of hydroxyl groups from the B-ring pharmacophore and the A:C fused ring system of the naturally occurring molecule. ECg binds rapidly to the membrane, inducing up-regulation of genes responsible for protection against cell wall stress and maintenance of membrane integrity and function. Studies with artificial membranes modelled on the lipid composition of the staphylococcal bilayer indicated that ECg adopts a position deep within the lipid palisade, eliciting major alterations in the thermotropic behaviour of the bilayer. The non-galloylated homolog (-)-epicatechin enhanced ECg-mediated effects by facilitating entry of ECg molecules into the membrane. ECg analogs with unnatural B-ring hydroxylation patterns induced higher levels of gene expression and more profound changes to MRSA membrane fluidity than ECg but adopted a more superficial location within the bilayer. ECg possessed a high affinity for the positively charged staphylococcal membrane and induced changes to the biophysical properties of the bilayer that are likely to account for its capacity to disperse the cell wall biosynthetic machinery responsible for β-lactam resistance. The ability to enhance these properties by chemical modification of ECg raises the possibility that more potent analogs could be developed for clinical evaluation

    Biosynthesis of the unique wall teichoic acid of <i>Staphylococcus aureus</i> lineage ST395

    No full text
    The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events

    Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM

    No full text
    Wall teichoic acid (WTA) glycopolymers are major constituents of cell envelopes in Staphylococcus aureus and related Gram-positive bacteria with important roles in cell wall maintenance, susceptibility to antimicrobial molecules, biofilm formation, and host interaction. Most S. aureus strains express polyribitol phosphate WTA substituted with d-alanine and N-acetylglucosamine (GlcNAc). WTA sugar modifications are highly variable and have been implicated in bacteriophage susceptibility and immunogenicity, but the pathway and enzymes of staphylococcal WTA glycosylation have remained unknown. Revisiting the structure of S. aureus RN4220 WTA by NMR analysis revealed the presence of canonical polyribitol phosphate WTA bearing only α-linked GlcNAc substituents. A RN4220 transposon mutant resistant to WTA-dependent phages was identified and shown to produce altered WTA, which exhibited faster electrophoretic migration and lacked completely the WTA α-GlcNAc residues. Disruption of a gene of unknown function, renamed tarM, was responsible for this phenotype. Recombinant TarM was capable of glycosylating WTA in vitro in a UDP-GlcNAc-dependent manner, thereby confirming its WTA GlcNAc-transferase activity. Deletion of the last seven amino acids from the C terminus abolished the activity of TarM. tarM-related genes were found in the genomes of several WTA-producing bacteria, suggesting that TarM-mediated WTA glycosylation is a general pathway in Gram-positive bacteria. Our study represents a basis for dissecting the biosynthesis and function of glycosylated WTA in S. aureus and other bacteria
    corecore