897 research outputs found

    Effector Functions of Natural Killer Cell Subsets in the Control of Hematological Malignancies.

    Get PDF
    Treatment of hematological malignant disorders has been improved over the last years, but high relapse rate mainly attributable to the presence of minimal residual disease still persists. Therefore, it is of great interest to explore novel therapeutic strategies to obtain long-term remission. Immune effector cells, and especially natural killer (NK) cells, play a crucial role in the control of hematological malignancies. In this regard, the efficiency of allogeneic stem cell transplantation clearly depends on the immune-mediated graft versus leukemia effect without the risk of inducing graft versus host disease. Alloreactive donor NK cells generated following hematopoietic stem cell transplantation ameliorate the outcome of leukemia patients; in addition, in vivo transfer of in vitro expanded NK cells represents a crucial tool for leukemia treatment. To improve NK cell effector functions against resistant leukemia cells, novel immunotherapeutic strategies are oriented to the identification, isolation, expansion, and administration of particular NK cell subsets endowed with multifunctional anti-tumor potential and tropism toward tumor sites. Moreover, the relationship between the emergence and persistence of distinct NK cell subsets during post-graft reconstitution and the maintenance of a remission state is still rather unclear

    Effect of modulation of protein kinase C on the cAMP-dependent chloride conductance in T84 cells

    Get PDF
    AbstractThe regulation of chloride conductance was investigated in the T84 human colon carcinoma cell line by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl)quinolinium. The permeable cAMP analog 8-Br-cAMP (100 μ) and the calcium ionophore ionomycin (1 μM) activate a chloride conductance. A prolonged (4 h) preincubation of cells with phorbol 12-myristate 13-acetate (100 nM) or with the diacylglycerol analog 1-oleoyl-2-acetyl-glycerol (100 μM): (1) down-modulates to almost zero the protein kinase C activity in the membranes; (ii) inhibits the activation of the chloride conductance mediated by 8-Br-cAMP but not by calcium; (iii) reduces the mRNA without changing the expression of the protein product of the cystic fibrosis gene. The data suggest that PKC is essential for the activation of the cAMP-dependt chloride conductance in T84 cells

    Acquisition of Ly49 Receptor Expression by Developing Natural Killer Cells

    Get PDF
    The formation of the repertoire of mouse natural killer (NK) cell receptors for major histocompatibility complex (MHC) class I molecules was investigated by determining the developmental pattern of Ly49 receptor expression. During the first days after birth, few or no splenic NK cells express Ly49A, Ly49C, Ly49G2, or Ly49I receptors. The proportion of Ly49+ splenic NK cells gradually rises to adult levels during the first 6–8 wk of life. The appearance of appreciable numbers of splenic Ly49+ NK cells coincides with the appearance of NK activity at 3–4 wk. After in vivo transfer, NK cells not expressing specific Ly49 receptors can give rise to NK cells that do, and cells expressing one of these four Ly49 receptors can give rise to cells expressing others. Once initiated, expression of a Ly49 receptor is stable for at least 10 d after in vivo transfer. Hence, initiation of Ly49 receptor expression occurs successively. Interestingly, expression of one of the receptors tested, Ly49A, did not occur after in vivo transfer of Ly49A− cells. One possible explanation for these data is that the order of Ly49 receptor expression by NK cells is nonrandom. The results provide a framework for evaluating models of NK cell repertoire formation, and how the repertoire is molded by host class I MHC molecules

    The occlusion illusion: partial modal completion or apparent distance?

    Get PDF
    In the occlusion illusion, the visible portion of a partly occluded object (eg a semicircle partly hidden behind a rectangle) appears to be significantly larger than a physically identical region that is fully visible. This illusion may occur either because the visual system 'fills in' a thin strip along the occluded border (the partial-modal-completion hypothesis) or because the partly occluded object is perceived as farther away (the apparent-distance hypothesis). We measured the magnitude of the occlusion illusion psychophysically in several experiments to investigate its causes. The results of experiments 1-3 are consistent with the general proposal that the magnitude of the illusion varies with the strength of the evidence for occlusion, supporting the inference that it is due to occlusion. Experiment 4 provides a critical test between apparent-distance and partial-modal-completion explanations by determining whether the increase in apparent size of the occluded region results from a change in its perceived shape (due to the modal extension of the occluded shape along the occluding edge, as predicted by the partial-modal-completion hypothesis) or from a change in its perceived overall size (as predicted by the apparent-distance hypothesis). The results more strongly support the partial-modal-completion hypothesis
    • …
    corecore