15 research outputs found

    Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells

    Get PDF
    The molecular mechanisms controlling inductive events leading to the specification and terminal differentiation of cardiomyocytes are still largely unknown. We have investigated the role of Cripto, an EGF-CFC factor, in the earliest stages of cardiomyogenesis. We find that both the timing of initiation and the duration of Cripto signaling are crucial for priming differentiation of embryonic stem (ES) cells into cardiomyocytes, indicating that Cripto acts early to determine the cardiac fate. Furthermore, we show that failure to activate Cripto signaling in this early window of time results in a direct conversion of ES cells into a neural fate. Moreover, the induction of Cripto activates the Smad2 pathway, and overexpression of activated forms of type I receptor ActRIB compensates for the lack of Cripto signaling in promoting cardiomyogenesis. Finally, we show that Nodal antagonists inhibit Cripto-regulated cardiomyocyte induction and differentiation in ES cells. All together our findings provide evidence for a novel role of the Nodal/Cripto/Alk4 pathway in this process

    Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo

    Get PDF
    During early mouse development, the TGF beta-related protein Nodal specifies the organizing centers that control the formation of the anterior-posterior (A-P) axis. EGF-CFC proteins are important components of the Nodal signaling pathway, most likely by acting as Nodal coreceptors. However, the extent to which Nodal activity depends on EGF-CFC proteins is still debated. Cripto is the earliest EGF-CFC gene expressed during mouse embryogenesis and is involved in both A-P axis orientation and mesoderm formation. To investigate the relation between Cripto and Nodal in the early mouse embryo, we removed the Nodal antagonist Cerberus 1 (Cer1) and simultaneously Cripto, by generating Cer1;Cripto double mouse mutants. We observed that two thirds of the Cer1,Cripto double mutants are rescued in processes that are severely compromised in Cripto(-/-) embryos, namely A-P axis orientation, anterior mesendoderm and posterior neuroectoderin formation. The observed rescue is strongly reduced in Cer1;Cripto;Nodal triple mutants, suggesting that Nodal can signal extensively in the absence of Cripto, if Cer1 is also inhibited. This signaling activity drives A-P axis positioning. Our results provide evidence for the existence. of Cripto-independent signaling mechanisms, by which Nodal controls axis specification in the early mouse embryo. (C) 2007 Elsevier Inc. All rights reserved

    <i>C. elegans</i>PVF-1 inhibits permissive UNC-40 signalling through CED-10 GTPase to position the male ray 1 sensillum

    No full text
    Graded distributions of netrin and semaphorin guidance cues convey instructive polarity information to migrating cells and growth cones, but also have permissive (i.e. non-polarity determining) functions in mammalian development and repair. The permissive functions of these cues are largely uncharacterised at a molecular level. We found previously that UNC-6 (netrin) signals permissively through UNC-40 (DCC) and UNC-5 receptors to prevent anterior displacement of the ray 1 sensillum in the C. elegans male tail. UNC-6/UNC-40 signalling functions in parallel with SMP-1 (semaporin 1)/PLX-1 (plexin) signalling to prevent this defect. Here, we report that a deletion allele of pvf-1, which encodes a VEGF-related protein, causes no ray 1 defects, but enhances ray 1 defects of a plx-1 mutant, and unexpectedly also suppresses unc-6(ev400)-null mutant ray 1 defects. These mutant ray 1 inductive and suppressive effects are mimicked by the ability of unc-40(+) and ced-10(gain-of-function) multi-copy transgene arrays to induce ray 1 defects or suppress unc-6 mutant ray 1 defects, depending on their dosage, suggesting the pvf-1 mutation causes UNC-40 overactivity that interferes with signalling but is partially sensitive to UNC-6. Additional data suggest PVF-1 functions through four VEGF receptor-related proteins and inhibits only CED-10 (a GTPase), but not MIG-2-dependent UNC-40 activity, even though UNC-40 functions through both GTPases to position ray 1. pvf-1 and receptor mutant ray 1 defects are rescued by transgenes expressing mouse VEGF164 and human VEGF receptors, respectively. These data report the first case of VEGF-induced inhibition of the netrin signalling and a molecular conservation of VEGF function from worms to humans

    The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    No full text
    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling
    corecore