931 research outputs found
Dietary patterns, insulin sensitivity and inflammation in older adults.
Background/objectivesSeveral studies have linked dietary patterns to insulin sensitivity and systemic inflammation, which affect risk of multiple chronic diseases. The purpose of this study was to investigate the dietary patterns of a cohort of older adults, and to examine relationships of dietary patterns with markers of insulin sensitivity and systemic inflammation.Subjects/methodsThe Health, Aging and Body Composition (Health ABC) Study is a prospective cohort study of 3075 older adults. In Health ABC, multiple indicators of glucose metabolism and systemic inflammation were assessed. Food intake was estimated with a modified Block food frequency questionnaire. In this study, dietary patterns of 1751 participants with complete data were derived by cluster analysis.ResultsSix clusters were identified, including a 'healthy foods' cluster, characterized by higher intake of low-fat dairy products, fruit, whole grains, poultry, fish and vegetables. In the main analysis, the 'healthy foods' cluster had significantly lower fasting insulin and homeostasis model assessment of insulin resistance values than the 'breakfast cereal' and 'high-fat dairy products' clusters, and lower fasting glucose than the 'high-fat dairy products' cluster (P≤0.05). No differences were found in 2-h glucose. With respect to inflammation, the 'healthy foods' cluster had lower interleukin-6 than the 'sweets and desserts' and 'high-fat dairy products' clusters, and no differences were seen in C-reactive protein or tumor necrosis factor-α.ConclusionsA dietary pattern high in low-fat dairy products, fruit, whole grains, poultry, fish and vegetables may be associated with greater insulin sensitivity and lower systemic inflammation in older adults
Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa
Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.Spanish Ministry of Economy and Competitiveness [CTM2014-57949-R]info:eu-repo/semantics/publishedVersio
Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.
The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts
Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins.
Sphingolipids have important roles in membrane and lipoprotein structure and in cell regulation as second messengers for growth factors, differentiation factors, cytokines, and a growing list of agonists. Bioactive sphingolipids are formed both by the turnover of complex sphingolipids and as intermediates of sphingolipid biosynthesis. Usually, the amounts are highly regulated; however, by inhibiting ceramide synthase, fumonisins block the biosynthesis of complex sphingolipids and cause sphinganine (and sometimes sphingosine) to accumulate. Where the mechanism has been studied most thoroughly, the accumulation of sphingoid bases is a primary cause of the toxicity of fumonisin B (FB). Nonetheless, the full effects of fumonisins probably involve many biochemical events. The elevations in sphingoid bases also affect the amounts of other lipids, including the 1-phosphates and N-acetyl derivatives of sphinganine. Furthermore, the aminopentol backbone of FB1 (AP1) is both an inhibitor and a substrate for ceramide synthase, and the resultant N-palmitoyl-AP1 (PAP1) is an even more potent inhibitor of ceramide synthase (presumably as a product analog). PAP1 is 10 times more toxic than FB1 or AP1 for HT-29 cells in culture, and hence may play a role in the toxicity of nixtamalized fumonisins. All these processes--the effects of fumonisins on sphingolipid metabolism, the pathways altered by perturbation of sphingolipid metabolism, and the complex cellular behaviors regulated by sphingolipids--must be borne in mind when evaluating the pathologic effects of fumonisins
Caribbean-wide decline in carbonate production threatens coral reef growth
This a post-print, author-produced version of an article accepted for publication in Nature Communications. Copyright © 2013 Nature Publishing Group . The definitive version is available at http://www.nature.com/ncomms/journal/v4/n1/full/ncomms2409.htmlGlobal-scale deteriorations in coral reef health have caused major shifts in species composition. One projected consequence is a lowering of reef carbonate production rates, potentially impairing reef growth, compromising ecosystem functionality and ultimately leading to net reef erosion. Here, using measures of gross and net carbonate production and erosion from 19 Caribbean reefs, we show that contemporary carbonate production rates are now substantially below historical (mid- to late-Holocene) values. On average, current production rates are reduced by at least 50%, and 37% of surveyed sites were net erosional. Calculated accretion rates (mm year(-1)) for shallow fore-reef habitats are also close to an order of magnitude lower than Holocene averages. A live coral cover threshold of ~10% appears critical to maintaining positive production states. Below this ecological threshold carbonate budgets typically become net negative and threaten reef accretion. Collectively, these data suggest that recent ecological declines are now suppressing Caribbean reef growth potential
The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation
Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4
β1- and β2-adrenergic receptors (βARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by β1AR but not β2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that β1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a β2AR/β-arrestin/PDE complex reported previously. The β1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the β2AR is a prerequisite for the recruitment of a complex consisting of β-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of β1- and β2-adrenoceptor signaling
Stepping stones towards Antarctica: Switch to southern spawning grounds explains an abrupt range shift in krill
Poleward range shifts are a global-scale response to warming, but these vary greatly among taxa and are hard to predict for individual species, localized regions or over shorter (years to decadal) timescales. Moving poleward might be easier in the Arctic than in the Southern Ocean, where evidence for range shifts is sparse and contradictory. Here, we compiled a database of larval Antarctic krill, Euphausia superba and, together with an adult database, it showed how their range shift is out of step with the pace of warming. During a 70-year period of rapid warming (1920s–1990s), distribution centres of both larvae and adults in the SW Atlantic sector remained fixed, despite warming by 0.5–1.0°C and losing sea ice. This was followed by a hiatus in surface warming and ice loss, yet during this period the distributions of krill life stages shifted greatly, by ~1000 km, to the south-west. Understanding the mechanism of such step changes is essential, since they herald system reorganizations that are hard to predict with current modelling approaches. We propose that the abrupt shift was driven by climatic controls acting on localized recruitment hotspots, superimposed on thermal niche conservatism. During the warming hiatus, the Southern Annular Mode index continued to become increasingly positive and, likely through reduced feeding success for larvae, this led to a precipitous decline in recruitment from the main reproduction hotspot along the southern Scotia Arc. This cut replenishment to the northern portion of the krill stock, as evidenced by declining density and swarm frequency. Concomitantly, a new, southern reproduction area developed after the 1990s, reinforcing the range shift despite the lack of surface warming. New spawning hotspots may provide the stepping stones needed for range shifts into polar regions, so planning of climate-ready marine protected areas should include these key areas of future habitat
Building Babies - Chapter 16
In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1)
Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg
- …