2,189 research outputs found

    The effects of cross-orientation masking on the visual gamma response in humans

    Get PDF
    Electrophysiological recordings in primates indicate that visual gamma contains distinct broad- and narrowband components that reflect different neuronal processes. Evidence suggests that cross-orientation masking of luminance-defined gratings should differentially modulate these two components. To test this we measured the effect of cross-orientation masking on the gamma response in 12 human participants using magentoencephalography (MEG). Although both the amplitude and the frequency of gamma were modulated by the presence of a cross-orientation mask, we failed to find evidence for distinguishable components: both broadband gamma at stimulus onset and sustained narrowband gamma were similarly modulated by mask contrast. However, we could not confirm the presence of masking effects due to mask contrast being confounded with the contrast of the stimulus as a whole. We therefore tested a further 12 participants in a second experiment in which the stimuli were: a plaid stimulus, the two component gratings which formed the plaid and the same two gratings but with Michelson contrast matched to the plaid. We found that gamma amplitude was reduced and gamma frequency increased to the plaid stimulus when compared with the contrast-matched gratings or with the sum of the two component gratings, indicating that visual gamma was indeed modulated by cross-orientation masking. Surprisingly, masking did not affect the pattern-onset evoked response, challenging previous hypotheses that cross-orientation suppression – the phenomenon by which the response to an orientated grating is suppressed by a cross-orientation mask – is driven by feedforward inputs to V1

    Spatial frequency supports the emergence of categorical representations in visual cortex during natural scene perception

    Get PDF
    In navigating our environment, we rapidly process and extract meaning from visual cues. However, the relationship between visual features and categorical representations in natural scene perception is still not well understood. Here, we used natural scene stimuli from different categories and filtered at different spatial frequencies to address this question in a passive viewing paradigm. Using representational similarity analysis (RSA) and cross-decoding of magnetoencephalography (MEG) data, we show that categorical representations emerge in human visual cortex at ∼180 ms and are linked to spatial frequency processing. Furthermore, dorsal and ventral stream areas reveal temporally and spatially overlapping representations of low and high-level layer activations extracted from a feedforward neural network. Our results suggest that neural patterns from extrastriate visual cortex switch from low-level to categorical representations within 200 ms, highlighting the rapid cascade of processing stages essential in human visual perception

    Retinotopic mapping of the primary visual cortex – a challenge for MEG imaging of the human cortex

    Get PDF
    Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions

    Dominant convict cichlids (Amatitlania nigrofasciata) grow faster than subordinates when fed an equal ration

    Get PDF
    Previous studies indicate that dominant fish grow faster than subordinate fish when fed equal rations. It is unclear, however, whether this growth differential is caused by intrinsic differences related to their propensity to become dominant, or by the extrinsic effect of the social stress experienced by subordinates. We first tested whether dominant convict cichlids (Amatitlania nigrofasciata) grew faster than subordinates when fed an equal amount of food. Second, we tested whether the growth advantage of dominants occurred when only visual interactions were allowed between pairs of fish. Third, we randomly assigned social status to the fish to rule out the possibility that intrinsic differences between fish were responsible for both the establishment of dominance and the growth differences. In three separate experiments, dominant fish grew faster than size-matched subordinate convict cichlids, but the growth advantage of dominants was higher when there were direct interactions between fish compared to only visual interactions. Our results provide strong support for the hypothesis that the slower growth rate of subordinate fish was due to the physiological costs of stress

    Morphometric analysis of structural MRI using schizophrenia meta-analytic priors distinguish patients from controls in two independent samples and in a sample of individuals with high polygenic risk

    Get PDF
    Schizophrenia (SCZ) is associated with structural brain changes, with considerable variation in the extent to which these cortical regions are influenced. We present a novel metric that summarises individual structural variation across the brain, while considering prior effect sizes, established via meta-analysis. We determine individual participant deviation from a within-sample-norm across structural MRI regions of interest (ROIs). For each participant, we weight the normalised deviation of each ROI by the effect size (Cohen’s d) of the difference between SCZ/control for the corresponding ROI from the SCZ Enhancing Neuroimaging Genomics through Meta-Analysis working group. We generate a morphometric risk score (MRS) representing the average of these weighted deviations. We investigate if SCZ-MRS is elevated in a SCZ case/control sample (N(CASE) = 50; N(CONTROL) = 125), a replication sample (N(CASE) = 23; N(CONTROL) = 20) and a sample of asymptomatic young adults with extreme SCZ polygenic risk (N(HIGH-SCZ-PRS) = 95; N(LOW-SCZ-PRS) = 94). SCZ cases had higher SCZ-MRS than healthy controls in both samples (Study 1: β = 0.62, P < 0.001; Study 2: β = 0.81, P = 0.018). The high liability SCZ-PRS group also had a higher SCZ-MRS (Study 3: β = 0.29, P = 0.044). Furthermore, the SCZ-MRS was uniquely associated with SCZ status, but not attention-deficit hyperactivity disorder (ADHD), whereas an ADHD-MRS was linked to ADHD status, but not SCZ. This approach provides a promising solution when considering individual heterogeneity in SCZ-related brain alterations by identifying individual’s patterns of structural brain-wide alterations

    Engineered basement membranes:from in vivo considerations to cell-based assays

    Get PDF
    International audienceImprovements in the physiological relevance of cell-based assays have been enabled by the development of various interdisciplinary methods. However, due to their complexity, in vivo structures such as basement membranes (BMs), which regulate the phenotype of adherent cells, are still difficult to mimic in vitro. The reconstruction of a physiologically relevant BM is crucially important to develop cell-based assays with the capacity for drug screening and disease modelling. Here, we review the biophysical and biochemical properties of BMs in vivo and their interactions with neighbouring cells. We discuss the current methods used to mimic BM functions in cell-based assays according to the type of targeted applications. In doing so, we examine the advantages and limitations of each method as well as exploring approaches to improve the physiological relevance of engineered or cell-derived BMs in vitro

    Structural variation, dynamics, and catalytic application of palladium(II) complexes of di-N-heterocyclic carbene-amine ligands

    Get PDF
    A series of palladium(II) complexes incorporating di-NHC-amine ligands has been prepared and their structural, dynamic and catalytic behaviour investigated. The complexes [trans-(k(2)-(CN)-C-tBu(Bn)CN(Bn)C-tBu)PdCl2] (12) and [trans-(kappa(2)-(CN)-C-Mes(H)C-Mes)PdCl2] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between - 40 and 25 degrees C shows that the di-NHC-amine ligand is flexible expressing C-s symmetry and for 13 rotation of the mesityl groups is prevented. In the related C-1 complex [(kappa(3)-(CN)-C-tBu(H)C-tBu)PdCl][CI] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C. Reaction between 12 - 14 and two equivalents of AgBF4 in acetonitrile gives the analogous complexes [trans-(kappa(2)-(CN)-C-tBu(Bn)C-tBu)PdCl2] (12) and [trans-(kappa(CN)-C-2Mes(H)C-Mes)PdCl2] (13) do not exhibit interaction between the amine nitrogen and palladium atom respectively. NMR spectroscopy between -40 ans 25 degrees C shows the di-NHC-amine ligand is flexible expressing C-s symmetry and for 13 rotation of the mesityl groups is prevented. In the related C-1 complex [kappa(3)-(CN)-C-tBu(H)C-tBu)PdCI][CI] (14) coordination of NHC moieties and amine nitrogen atom is observed between -40 and 25 degrees C.Reaction between 12-14 and two equivalents of AgBF4 in acetonitrile gives the analogous complexes [trans-(kappa(2)-(CN)-C-tBu(H)(CPd)-Pd-tBu(MeCN)(2)][BF4](2) (15), [trans-(kappa(CN)-C-2Mes(H)C-Mes)Pd(MeCN)(2)[BF4](2 (16)) and [(kappa(3)-(CN)-C-tBu(H)C-tBu)Pd(MeCN)][BF4](2) (17) indicating that ligand structure determines amine coordination. The single crystal X-ray structures of 12, 17 and two ligand imidazolium salt precursors C-tBu(H)N(Bn)C(H) (tBu)][CI](2) (2) and [C-tBu(H) N(H)C(H)(tBu)][BPh4](2) (4) have been determined. Complexes 12-14 and 15-17 have been shown to be active precatalysts for Heck and hydroamination reactions respectively

    Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity

    Get PDF
    Magnetoencephalography (MEG) is increasingly being used to study brain function because of its excellent temporal resolution and its direct association with brain activity at the neuronal level. One possible cause of error in the analysis of MEG data comes from the fact that participants, even MEG-experienced ones, move their head in the MEG system. Head movement can cause source localization errors during the analysis of MEG data, which can result in the appearance of source variability that does not reflect brain activity. The MEG community places great importance in eliminating this source of possible errors as is evident, for example, by recent efforts to develop head casts that limit head movement in the MEG system. In this work we use software tools to identify, assess and eliminate from the analysis of MEG data any possible correlations between head movement in the MEG system and widely-used measures of brain activity derived from MEG resting-state recordings. The measures of brain activity we study are a) the Hilbert-transform derived amplitude envelope of the beamformer time series and b) functional networks; both measures derived by MEG resting-state recordings. Ten-minute MEG resting-state recordings were performed on healthy participants, with head position continuously recorded. The sources of the measured magnetic signals were localized via beamformer spatial filtering. Temporal independent component analysis was subsequently used to derive resting-state networks. Significant correlations were observed between the beamformer envelope time series and head movement. The correlations were substantially reduced, and in some cases eliminated, after a participant-specific temporal highpass filter was applied to those time series. Regressing the head movement metrics out of the beamformer envelope time series had an even stronger effect in reducing these correlations. Correlation trends were also observed between head movement and the activation time series of the default-mode and frontal networks. Regressing the head movement metrics out of the beamformer envelope time series completely eliminated these correlations. Additionally, applying the head movement correction resulted in changes in the network spatial maps for the visual and sensorimotor networks. Our results a) show that the results of MEG resting-state studies that use the above-mentioned analysis methods are confounded by head movement effects, b) suggest that regressing the head movement metrics out of the beamformer envelope time series is a necessary step to be added to these analyses, in order to eliminate the effect that head movement has on the amplitude envelope of beamformer time series and the network time series and c) highlight changes in the connectivity spatial maps when head movement correction is applie

    Linear tuning of gamma amplitude and frequency to luminance contrast: evidence from a continuous mapping paradigm

    Get PDF
    Individual differences in the visual gamma (30–100Hz) response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition) have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency) are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient) varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10–25Hz), but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes
    corecore