12,714 research outputs found
Optical properties of irregular interstellar grains
In order to study the interaction of light with interstellar grains, the authors represent an irregular particle by a network of interacting dipoles whose polarizability is determined in a first approach by the Clausius-Mossoti relationship. Typically, 10,000 dipoles are considered. In the case of spherical particles, the results from Mie theory are fully recovered. The main interest of this method is to study with good accuracy the implications of surface roughness and/or inhomogeneities on optical properties in the infrared spectral range, particularly of the silicate emission features
Optimal estimates of the diffusion coefficient of a single Brownian trajectory
Modern developments in microscopy and image processing are revolutionizing
areas of physics, chemistry and biology as nanoscale objects can be tracked
with unprecedented accuracy. The goal of single particle tracking is to
determine the interaction between the particle and its environment. The price
paid for having a direct visualization of a single particle is a consequent
lack of statistics. Here we address the optimal way of extracting diffusion
constants from single trajectories for pure Brownian motion. It is shown that
the maximum likelihood estimator is much more efficient than the commonly used
least squares estimate. Furthermore we investigate the effect of disorder on
the distribution of estimated diffusion constants and show that it increases
the probability of observing estimates much smaller than the true (average)
value.Comment: 8 pages, 5 figure
Spatial distribution of unidentified infrared bands and extended red emission in the compact galactic HII region Sh 152
We present visible and near IR images of the compact HII region Sh 152. Some
of these images reveal the presence of Extended Red Emission (ERE) around 698
nm and emission from Unidentified Infra Red Bands (UIRBs) at 3.3 and 6.2
micron. Other images show the near infrared (7-12 micron) continuous emission
of the nebula. The ERE emission is found to coincide with the ionized region
and significantly differ from the UIRBs location. Also some evidence is found
in favor of grains as carriers for ERE.Comment: 3 pages, 4 figures, to be published in the proceedings of the
colloquium "The universe as seen by ISO" help in Paris, October 20-23, 1998 ;
available in html format at http://www.obs-hp.fr/preprints.htm
Knowledge-based Virtual Reconstruction of Museum Artifacts
Within the framework of heritage preservation, 3D scanning and modeling for heritage documentation has increased significantly in recent years, mainly due to the evolution of laser and image-based techniques, modeling software, powerful computers and virtual reality. 3D laser acquisition constitutes a real development opportunity for 3D modeling based previously on theoretical data. The representation of the object information rely on the knowledge of its historic and theoretical frame to reconstitute a posteriori its previous states.
This project proposes an approach dealing with data extraction based on architectural knowledge and Laser statement informing measurements, the whole leading to 3D reconstruction. The experimented Khmer objects are exposed at Guimet museum in Paris. The purpose of this digital modeling meets the need of exploitable models for simulation projects, prototyping, exhibitions, promoting cultural tourism and particularly for archiving against any likely disaster and as an aided tool for the formulation of virtual museum concept
Distinguishing an ejected blob from alternative flare models at the Galactic centre with GRAVITY
The black hole at the Galactic centre exhibits regularly flares of radiation,
the origin of which is still not understood. In this article, we study the
ability of the near-future GRAVITY infrared instrument to constrain the nature
of these events. We develop realistic simulations of GRAVITY astrometric data
sets for various flare models. We show that the instrument will be able to
distinguish an ejected blob from alternative flare models, provided the blob
inclination is >= 45deg, the flare brightest magnitude is 14 <= mK <= 15 and
the flare duration is >= 1h30.Comment: 11 pages, 9 figures, accepted by MNRA
Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility
We have developed a lab work module where we teach undergraduate students how
to quantify the dynamics of a suspension of microscopic particles, measuring
and analyzing the motion of those particles at the individual level or as a
group. Differential Dynamic Microscopy (DDM) is a relatively recent technique
that precisely does that and constitutes an alternative method to more
classical techniques such as dynamics light scattering (DLS) or video particle
tracking (VPT). DDM consists in imaging a particle dispersion with a standard
light microscope and a camera. The image analysis requires the students to code
and relies on digital Fourier transform to obtain the intermediate scattering
function, an autocorrelation function that characterizes the dynamics of the
dispersion. We first illustrate DDM on the textbook case of colloids where we
measure the diffusion coefficient. Then we show that DDM is a pertinent tool to
characterize biologic systems such as motile bacteria i.e.bacteria that can
self propel, where we not only determine the diffusion coefficient but also the
velocity and the fraction of motile bacteria. Finally, so that our paper can be
used as a tutorial to the DDM technique, we have joined to this article movies
of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab
and Python to analyze the movies
Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura
The Milandre test site is an ideal karstic aquifer for studying the spatial heterogeneity of groundwater chemistry. Numerous observation points can be sampled: the spring, the underground river and its tributaries, and boreholes at different depths. The main causes of the spatial variability of the chemical parameters are: nature and localisation of the input, the structure of the infiltration zone, chemical reactions (transit time vs. reaction kinetics) and mixing of different waters. Physico-chemical data on springs discharging from the karstic system represent the sum of this spatial heterogeneity. Therefore, it is difficult to interpret the global-chemical response with a simple mixing model of the aquifer subsystems (runoff, matrix reservoir, epikarst). Chemical constituents related to agricultural inputs show important seasonal variations (coefficient of variation approximately 15%) and parameters linked to rainfall (δ18O) and to the aquifer (Ca2+, HCO3 −) present variations of less than 5%. This result indicates the importance of water storage in the epikarstic aquifer for periods of a few month
The sediment of mixtures of charged colloids: segregation and inhomogeneous electric fields
We theoretically study sedimentation-diffusion equilibrium of dilute binary,
ternary, and polydisperse mixtures of colloidal particles with different
buoyant masses and/or charges. We focus on the low-salt regime, where the
entropy of the screening ions drives spontaneous charge separation and the
formation of an inhomogeneous macroscopic electric field. The resulting
electric force lifts the colloids against gravity, yielding highly
nonbarometric and even nonmonotonic colloidal density profiles. The most
profound effect is the phenomenon of segregation into layers of colloids with
equal mass-per-charge, including the possibility that heavy colloidal species
float onto lighter ones
- …