20 research outputs found

    Real-time monitoring shows substantial excess all-cause mortality during second wave of COVID-19 in Europe, October to December 2020.

    Get PDF
    The European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.Funding statement: The EuroMOMO network hub at Statens Serum Institut receives funding from European Centre for Disease Prevention and Control, Solna, Sweden, through a framework contract 2017-2020.S

    Itinerary of high density lipoproteins in endothelial cells

    Full text link
    High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route

    Survival of Pathogenic Mycobacteria in Macrophages Is Mediated through Autophosphorylation of Protein Kinase G▿ †

    Get PDF
    Pathogenic mycobacteria survive within macrophages through the inhibition of phagosome-lysosome fusion. A crucial factor for avoiding lysosomal degradation is the mycobacterial serine/threonine protein kinase G (PknG). PknG is released into the macrophage cytosol upon mycobacterial infection, suggesting that PknG might exert its activity by interfering with host signaling cascades, but the mode of action of PknG remains unknown. Here, we show that PknG undergoes autophosphorylation on threonine residues located at the N terminus. In contrast to all other mycobacterial kinases investigated thus far, autophosphorylation of PknG was not involved in the regulation of its kinase activity. However, autophosphorylation was crucial for the capacity of PknG to promote mycobacterial survival within macrophages. These results will contribute to a better understanding of the virulence mechanisms of pathogenic mycobacteria and may help to design improved inhibitors of PknG to be developed as antimycobacterial compounds

    Interleukin 6 stimulates endothelial binding and transport of high-density lipoprotein through induction of endothelial lipase

    Full text link
    OBJECTIVE: In the reverse cholesterol transport pathway, high-density lipoprotein (HDL) passes the endothelial cell barrier by mechanisms involving the scavenger receptor class B type I and the ATP-binding cassette G1. However, little is known on how inflammation influences this transendothelial transport. APPROACH AND RESULTS: On stimulation with interleukin-6, cultivated primary endothelial cells showed increased binding and transport of (125)I-HDL without changing the expression of scavenger receptor class B type I and ATP-binding cassette G1. Therefore, we analyzed the involvement of endothelial lipase (EL), a known HDL-binding protein expressed by endothelial cells. Here, we show an increased EL expression after interleukin-6 stimulation. Moreover, using pharmacological inhibitors or RNA interference against EL, we demonstrated its participation in HDL binding and transport through the endothelium. Furthermore, adenovirus-mediated transfection of endothelial cells with either catalytically active or nonactive EL revealed that EL facilitates the endothelial binding and transport by both bridging and lipolysis of HDL. EL was also found responsible for the reduction of HDL particle size occurring during the specific transport through a monolayer of endothelial cells. Finally, pharmacological inhibition of EL reversed the inducing effect of interleukin-6 on HDL binding and transport. CONCLUSIONS: Interleukin-6 stimulates the translocation of HDL through the endothelium, the first step in reverse cholesterol transport pathway, by enhancing EL expression. In addition, we demonstrated the role of EL in the transendothelial transport of HDL

    Temporal and regional incidence of carbapenemase-producing Enterobacterales, Switzerland, 2013 to 2018

    Get PDF
    IntroductionIn contrast to countries where carbapenemase-producing Enterobacterales (CPE) are endemic, only sporadic cases were reported in Switzerland until 2013. An aggravation of the epidemiological situation in neighbouring European countries indicated the need for a surveillance study in Switzerland.AimWe aimed to describe CPE distributions in Switzerland and identify epidemiological factors associated with changes in incidence.MethodsData on all human CPE isolates from 2013 to 2018 were collected by the Swiss Centre for Antibiotic Resistance (ANRESIS) and analysed for temporal and regional trends by Generalised Poisson regression. Isolates associated with infection or colonisation were included in a primary analysis; a secondary analysis included invasive isolates only. Statistical detection of regional clusters was performed with WHONET/SaTScan.ResultsWe analysed 731 CPE isolates, of which 325 (44.5%) were associated with screenings and 173 (23.7%) with infections. Yearly detection of CPE isolates increased considerably during the study period from 65 to 212. The most frequently isolated species were Klebsiella pneumoniae (54%) and Escherichia coli (28%). The most frequent genotypes were OXA-48 (43%), KPC (21%) and NDM (14%). In contrast to the French-speaking parts of Switzerland (West, Geneva) where OXA-48 were the predominant genotypes (around 60%), KPC was the most frequently detected genotype in the Italian-speaking region (63%). WHONET/SaTScan outbreak detection analysis identified seven clusters in five regions of Switzerland.ConclusionsIn a first continuous surveillance of CPE in Switzerland, we found that the epidemiological situation aggravated nationwide and that regional patterns of CPE genotypes mirrored the situation in neighbouring European countries

    Socioeconomic position and the COVID-19 care cascade from testing to mortality in Switzerland: a population-based analysis

    Get PDF
    Background: The inverse care law states that disadvantaged populations need more health care than advantaged populations but receive less. Gaps in COVID-19-related health care and infection control are not well understood. We aimed to examine inequalities in health in the care cascade from testing for SARS-CoV-2 to COVID-19-related hospitalisation, intensive care unit (ICU) admission, and death in Switzerland, a wealthy country strongly affected by the pandemic. Methods: We analysed surveillance data reported to the Swiss Federal Office of Public Health from March 1, 2020, to April 16, 2021, and 2018 population data. We geocoded residential addresses of notifications to identify the Swiss neighbourhood index of socioeconomic position (Swiss-SEP). The index describes 1·27 million small neighbourhoods of approximately 50 households each on the basis of rent per m2, education and occupation of household heads, and crowding. We used negative binomial regression models to calculate incidence rate ratios (IRRs) with 95% credible intervals (CrIs) of the association between ten groups of the Swiss-SEP index defined by deciles (1=lowest, 10=highest) and outcomes. Models were adjusted for sex, age, canton, and wave of the epidemic (before or after June 8, 2020). We used three different denominators: the general population, the number of tests, and the number of positive tests. Findings: Analyses were based on 4 129 636 tests, 609 782 positive tests, 26 143 hospitalisations, 2432 ICU admissions, 9383 deaths, and 8 221 406 residents. Comparing the highest with the lowest Swiss-SEP group and using the general population as the denominator, more tests were done among people living in neighbourhoods of highest SEP compared with lowest SEP (adjusted IRR 1·18 [95% CrI 1·02–1·36]). Among tested people, test positivity was lower (0·75 [0·69–0·81]) in neighbourhoods of highest SEP than of lowest SEP. Among people testing positive, the adjusted IRR was 0·68 (0·62–0·74) for hospitalisation, was 0·54 (0·43–0·70) for ICU admission, and 0·86 (0·76–0·99) for death. The associations between neighbourhood SEP and outcomes were stronger in younger age groups and we found heterogeneity between areas. Interpretation: The inverse care law and socioeconomic inequalities were evident in Switzerland during the COVID-19 epidemic. People living in neighbourhoods of low SEP were less likely to be tested but more likely to test positive, be admitted to hospital, or die, compared with those in areas of high SEP. It is essential to continue to monitor testing for SARS-CoV-2, access and uptake of COVID-19 vaccination and outcomes of COVID-19. Governments and health-care systems should address this pandemic of inequality by taking measures to reduce health inequalities in response to the SARS-CoV-2 pandemic. Funding: Swiss Federal Office of Public Health, Swiss National Science Foundation, EU Horizon 2020, Branco Weiss Foundation.ISSN:2468-266

    VEGF-A regulates cellular localization of SR-BI as well as transendothelial transport of HDL but not LDL

    Full text link
    OBJECTIVE: Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of transendothelial LDL and HDL transport. APPROACH AND RESULTS: Microscopy-based high-content screening was performed by incubating human aortic endothelial cells with 141 kinase-inhibiting drugs and fluorescent-labeled LDL or HDL. Inhibitors of vascular endothelial growth factor (VEGF) receptors (VEGFR) significantly decreased the uptake of HDL but not LDL. Silencing of VEGF receptor 2 significantly decreased cellular binding, association, and transendothelial transport of (125)I-HDL but not (125)I-LDL. RNA interference with VEGF receptor 1 or VEGF receptor 3 had no effect. Binding, uptake, and transport of HDL but not LDL were strongly reduced in the absence of VEGF-A from the cell culture medium and were restored by the addition of VEGF-A. The restoring effect of VEGF-A on endothelial binding, uptake, and transport of HDL was abrogated by pharmacological inhibition of phosphatidyl-inositol 3 kinase/protein kinase B or p38 mitogen-activated protein kinase, as well as silencing of scavenger receptor BI. Moreover, the presence of VEGF-A was found to be a prerequisite for the localization of scavenger receptor BI in the plasma membrane of endothelial cells. CONCLUSIONS: The identification of VEGF as a regulatory factor of transendothelial transport of HDL but not LDL supports the concept that the endothelium is a specific and, hence, druggable barrier for the entry of lipoproteins into the vascular wall

    Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein

    No full text
    OBJECTIVE: Apolipoprotein M (ApoM) enriches sphingosine-1-phosphate (S1P) within high density lipoproteins (HDL) and facilitates the activation of the S1P(1) receptor by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question how S1P regulates transendothelial HDL transport. APPROACH AND RESULTS: HDL were isolated from plasma of wild type mice, Apom knock-out mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells (BAECs and HAECs, respectively). We also compared the transport of fluorescently-labeled HDL or Evan’s Blue, which labels albumin, from the tail vein into the peritoneal cavity of apoE-haploinsufficient mice with (S1P(1)-iECKI) or without (CTRL) endothelium specific knock-in of S1P(1). The binding, association, and transport of HDL from Apom knock-out mice and human apoM-depleted HDL by BAECs was significantly lower than that of HDL from wild type mice and human apoM containing HDL, respectively. The binding, uptake, and transport of (125)I-HDL by HAECs was increased by an S1P(1) agonist but decreased by an S1P(1) inhibitor. Silencing of scavenger receptor BI (SR-BI) abrogated the stimulation of (125)I-HDL transport by the S1P(1) agonist. Compared to CTRL, S1P(1)-iECKI showed decreased transport of Evan’s Blue but increased transport of HDL from blood into the peritoneal cavity and SR-BI expression in the aortal endothelium. CONCLUSIONS: ApoM and S1P(1) promote transendothelial HDL transport. Their opposite effect on transendothelial transport of albumin and HDL indicates that HDL passes endothelial barriers by specific mechanisms rather than passive filtration
    corecore