23 research outputs found

    Evaluation of cord bilirubin and hemoglobin analysis in predicting pathological jaundice in term babies at risk of ABO incompatibility

    Get PDF
    Background: Cord bilirubin and hemoglobin analysis helps not only in predicting the pathological jaundice in ABO incompatibility but also useful for early referral and intervention for better outcome. Aim of this study is to evaluate the cord blood bilirubin and hemoglobin analysis in predicting pathological hyperbilirubinemia in newborn at risk of ABO incompatibility.Methods: In this descriptive study conducted in Government Stanley medical college between January 2016-June 2016, A positive or B positive babies born to O positive mothers with birth weight >2.5 kgs and gestational age >37 weeks were included. A total of 191 babies were studied. Cord bilirubin, reticulocyte count, hemoglobin and fourth day bilirubin were evaluated and data was analysed using Pearson’s Chi square and ANOVA.Results: Out of 191 babies, 25 (13%) did not develop any jaundice, 122 (64%) developed physiological jaundice and 44 (23%) had pathological jaundice. The mean cord bilirubin and cord hemoglobin values of newborn who did not develop jaundice were 1.35mg/dl and 15.3g/dl while the values among pathological jaundice were 3.15mg/dl and 14.97g/dl. Conclusions: Babies with cord bilirubin >1.8mg/dl and hemoglobin <15.1gm/dl are more prone for pathological hyperbilirubinemia

    Multi-Objective Optimization Based Image Segmentation: Method and Applications

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis

    Get PDF
    Objectives: Relaxation of vascular smooth muscle (VSM) requires re-uptake of cytosolic Ca2+ into the sarcoplasmic reticulum (SR) via the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA), or extrusion via the Plasma Membrane Ca2+ ATPase (PMCA) or sodium Ca2+ exchanger (NCX). Peroxynitrite, a reactive species formed in vascular inflammatory diseases, upregulates SERCA activity to induce relaxation but, chronically, can contribute to atherogenesis and altered vascular function by escalating endoplasmic reticulum stress. Our objectives were to determine if peroxynitrite-induced relaxation and Ca2+ handling processes within vascular smooth muscle cells were altered as atherosclerosis develops.&lt;p&gt;&lt;/p&gt; Methods: Aortae from control and ApoE−/− mice were studied histologically, functionally and for protein expression levels of SERCA and PMCA. Ca2+ responses were assessed in dissociated aortic smooth muscle cells in the presence and absence of extracellular Ca2+.&lt;p&gt;&lt;/p&gt; Results: Relaxation to peroxynitrite was concentration-dependent and endothelium-independent. The abilities of the SERCA blocker thapsigargin and the PMCA inhibitor carboxyeosin to block this relaxation were altered during fat feeding and plaque progression. SERCA levels were progressively reduced, while PMCA expression was upregulated. In ApoE−/− VSM cells, increases in cytosolic Ca2+ [Ca2+]c in response to SERCA blockade were reduced, while SERCA-independent Ca2+ clearance was faster compared to control.&lt;p&gt;&lt;/p&gt; Conclusion: As atherosclerosis develops in the ApoE−/− mouse, expression and function of Ca2+ handling proteins are altered. Up-regulation of Ca2+ removal via PMCA may offer a potential compensatory mechanism to help normalise the dysfunctional relaxation observed during disease progression

    Plant High-Affinity Potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity

    Get PDF
    High-affinity Potassium Transporters (HKTs) belong to an important class of integral membrane proteins (IMPs) that facilitate cation transport across the plasma membranes of plant cells. Some members of the HKT protein family have been shown to be critical for salinity tolerance in commercially important crop species, particularly in grains, through exclusion of Na+ ions from sensitive shoot tissues in plants. However, given the number of different HKT proteins expressed in plants, it is likely that different members of this protein family perform in a range of functions. Plant breeders and biotechnologists have attempted to manipulate HKT gene expression through genetic engineering and more conventional plant breeding methods to improve the salinity tolerance of commercially important crop plants. Successful manipulation of a biological trait is more likely to be effective after a thorough understanding of how the trait, genes and proteins are interconnected at the whole plant level. This article examines the current structural and functional knowledge relating to plant HKTs and how their structural features may explain their transport selectivity. We also highlight specific areas where new knowledge of plant HKT transporters is needed. Our goal is to present how knowledge of the structure of HKT proteins is helpful in understanding their function and how this understanding can be an invaluable experimental tool. As such, we assert that accurate structural information of plant IMPs will greatly inform functional studies and will lead to a deeper understanding of plant nutrition, signalling and stress tolerance, all of which represent factors that can be manipulated to improve agricultural productivity.Shane Waters, Matthew Gilliham and Maria Hrmov

    Healing ulcers and preventing their recurrences in the diabetic foot

    No full text
    Fifteen percent of people with diabetes develop an ulcer in the course of their lifetime. Eighty-five percent of the major amputations in diabetes mellitus are preceded by an ulcer. Management of ulcers and preventing their recurrence is important for the quality of life of the individual and reducing the cost of care of treatment. The main causative factors of ulceration are neuropathy, vasculopathy and limited joint mobility. Altered bio-mechanics due to the deformities secondary to neuropathy and limited joint mobility leads to focal points of increased pressure, which compromises circulation leading to ulcers. Ulcer management must not only address the healing of ulcers but also should correct the altered bio-mechanics to reduce the focal pressure points and prevent recurrence. An analysis of 700 patients presenting with foot problems to the Diabetic Clinic of Ganga Hospital led to the stratification of these patients into four classes of incremental severity. Class 1 – the foot at risk, Class 2 – superficial ulcers without infection, Class 3 – the crippled foot and Class 4 – the critical foot. Almost 77.5% presented in either Class 3 or 4 with complicated foot ulcers requiring major reconstruction or amputation. Class 1 foot can be managed conservatively with foot care and appropriate foot wear. Class 2 in addition to measures for ulcer healing would need surgery to correct the altered bio-mechanics to prevent the recurrence. The procedures called surgical offloading would depend on the site of the ulcer and would need an in-depth clinical study of the foot. Class 3 would need major reconstructive procedures and Class 4 would need amputation since it may be life-threatening. As clinicians, our main efforts must be focused towards identifying patients in Class 1 and offer advice on foot care and Class 2 where appropriate surgical offloading procedure would help preserve the foot

    Preparation of a partially avulsed scalp

    No full text

    Raziskava hidrodinamičnih lastnosti toka v cevni kači z ovalnostjo in gubami

    Full text link
    The forming of helical coils using a rolling process results in geometrical irregularities (wrinkles and ovality) that are likely to influence the hydrodynamic behaviour of the flow field inside the coil in applications such as air generators. In this study, the above behaviour was investigated by experimental and numerical analyses considering the heat exchanger used in dry air generators. In experimental analysis, a three-turn copper helical coil with wrinkles and ovality was investigated to estimate the global hydrodynamic characteristics inside the helical coil. The results were compared with that of the ideal geometry of a coil without wrinkles and ovality. The effect of wrinkles was assessed through friction factor, and the corresponding equivalent surface roughness was found to increase by 5.7 times, owing to the presence of wrinkles in the helical coil. Numerical simulation was conducted to determine the pressure distribution, velocity distribution, and secondary flow inside the helical coilthe results were validated with experimental data. A critical portion of the helical coil with multiple wrinkles was considered for numerical simulation to investigate the localized effects of wrinkles on the flow field behaviour. The analysis in the vicinity of wrinkles revealed negative pressure development during flow, which in turn would cause re-circulation and cavitation that are undesirable

    Legacy of draught cattle breeds of South India: Insights into population structure, genetic admixture and maternal origin.

    No full text
    The present study is the first comprehensive report on diversity, population structure, genetic admixture and mitochondrial DNA variation in South Indian draught type zebu cattle. The diversity of South Indian cattle was moderately high. A significantly strong negative correlation coefficient of -0.674 (P6.25%) was observed in Punganur, Vechur, Umblachery and Pulikulam cattle breeds. Two major maternal haplogroups, I1 and I2, typical of zebu cattle were observed, with the former being predominant than the later. The pairwise differences among the I2 haplotypes of South Indian cattle were relatively higher than West Indian (Indus valley site) zebu cattle. The results indicated the need for additional sampling and comprehensive analysis of mtDNA control region variations to unravel the probable location of origin and domestication of I2 zebu lineage. The present study also revealed major concerns on South Indian zebu cattle (i) risk of endangerment due to small effective population size and high rate of inbreeding (ii) lack of sufficient purebred zebu bulls for breeding and (iii) increasing level of taurine admixture in zebu cattle. Availability of purebred semen for artificial insemination, incorporation of genomic/molecular information to identify purebred animals and increased awareness among farmers will help to maintain breed purity, conserve and improve these important draught cattle germplasms of South India

    Size-controlled fabrication of silver nanoparticles using the: Hedyotis puberula leaf extract: Toxicity on mosquito vectors and impact on biological control agents

    No full text
    Mosquitoes vector important diseases, including malaria, dengue and Zika virus. The effective control and eradication of the mosquitoes can restrict the spread and severity of these diseases. Here the efficacy of silver nanoparticles (AgNPs) synthesized using the extract of Hedyotis puberula leaves on eggs, larvae and adults of Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. AgNPs were subjected to different biophysical analyses, including UV-Vis spectrophotometry, FTIR, XRD, AFM, SEM, TEM, EDX and DLS analysis. AgNPs were effective against the larvae of A. stephensi (LC50 16.58 μg ml-1), A. aegypti (LC50 18.05 μg ml-1) and C. quinquefasciatus (LC50 19.52 μg ml-1). AgNPs exerted complete egg mortality at 80 μg ml-1 against A. stephensi and at 100 and 120 μg ml-1 against A. aegypti and C. quinquefasciatus, respectively. LC50 of AgNPs on adults of A. stephensi, A. aegypti and C. quinquefasciatus were 33.11, 36.34 and 39.56 μg ml-1, respectively. Both the H. puberula leaf extract and AgNPs were tested against three mosquito biocontrol agents, Anisops bouvieri, Diplonychus indicus and Gambusia affinis. LC50 ranged from 1048 to 33 552 μg ml-1. Overall, the H. puberula aqueous leaf extract can be employed to fabricate eco-friendly AgNPs with mean size of 6-16 nm, highly effective on A. stephensi, A. aegypti and C. quinquefasciatus
    corecore