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SUMMARY

Image analysis plays a crucial role in various fields such as biology, medicine,

remote sensing, robotics and manufacturing. Image segmentation is a critical step

in image analysis since the result of segmentation plays an important role in fea-

ture extraction. In this work, image segmentation is carried out by thresholding.

Generally, the threshold is selected by optimizing a single objective. Thresholding

can be improved by combining the objectives of two different methods (Otsu and

minimum error thresholding methods). Hence, in this work, the optimum thresh-

old is calculated by solving a multi-objective optimization (MOO) problem. The

two objectives used in this work are maximizing the between-class variance and the

minimizing the error while histogram fitting. This MOO is solved using the plain

aggregating approach and simulated annealing by assigning appropriate weights to

each objective function. The MOO based thresholding overcomes the limitations of

the individual approaches and outperforms the results obtained by thresholding us-

ing either of the single objectives. The misclassification rate of the MOO approach

is compared with the traditional Otsu and minimum error thresholding methods.

The MOO based approach is tested on several examples. The first application is

in the estimation of crystal size distribution (CSD) using Particle Vision and Mea-

surement (PVM) images to assist in crystallization process control. In this study,

the segmentation results of the developed method are compared with the results of

Otsu and minimum error method. The segmented images are further processed by

means of feature extraction to estimate the CSD. The algorithm is tested on a set

of artificially generated crystallization images. The accuracy of this algorithm is

gauged by comparing the CSD estimated to the data used to generate the artificial

images. This accuracy was found to be around 92% for images in which about 20
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- 25 particles exist. The effect of parameters such as the number of images, the

number of particles in the images, and noise level in the images on the estimated

CSD is investigated. The second application relates to classifying benign and malig-

nant tumors to assist radiologists involved in the treatment of cancer patients. Our

proposed MOO methodology is used to segment the tumors (regions of interest) and

the results are compared with the other methods. With the help of feature extrac-

tion, a set of required features are extracted from the images. These features can

then be used by radiologists for classification purposes and subsequent treatment.

In addition to the two abovementioned process and medical applications, other il-

lustrative examples are also included to illuminate the utility of the proposed MOO

based thresholding in aiding decision making for real-world applications.
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Chapter 1 Introduction

Chapter 1

INTRODUCTION

The proverb ‘A picture is worth a thousand words’ says it all. Perhaps a picture

is worth several thousand data samples for it can best reflect the actual state of

some processes. With the advent of modern technology, images can be analyzed

to achieve certain goals. The main purpose of image processing is to improve the

pictorial information and extract information suitable for computer analysis for

decision-making and strategic interventions. Image analysis plays a crucial role in

extracting meaningful and actionable information from process images. Human eye

and the brain together is the best example of an image analysis system. Computer

based image analysis can be used to replace human effort so as to make the image

analysis process much more fast, efficient and automatic. Various fields such as

biology, medicine, remote sensing, robotics and manufacturing benefit from image

analysis.

1.1 Motivation

Image analysis has many applications in the chemical, food and pharmaceutical

industries spanning areas such as quality control, process control, machine con-

trol and robot control. In the food industry, ensuring uniform shape, texture and

size of the final products is of paramount importance. Similarly in crystallization

processes, it is vital to obtain a desired Crystal Size Distribution (CSD) (Braatz

2002). CSD needs to be estimated at regular intervals for controlling the process

effectively. There are many offline technologies such as microscopy for estimating

CSD and therby assisting in process control. However, recently the use of in-line

1



1.2 Background

measurements such as Particle Vision and Measurement (PVM) are being explored

for estimating CSD (Zhou et al. 2009). PVM can be used to obtain images at any

point of time from which the CSD can be estimated. Therefore, image analysis can

play a major role in crystallization process control as well.

Medical image analysis involves the analysis of clinical images taken with a view

to detect and diagnose diseases associated with body organs or to study the normal

physiological processes. These analyses can be performed on images obtained from

different imaging technologies such as ultrasound, radiology, magnetic resonance

imaging (MRI), etc. Image analysis methodology plays a vital role in cancer diag-

nosis (Cheng et al. 2010), thereby allowing doctors to decide on the right treatment

for the patient. Breast cancer is one of the leading causes of death among women.

Generally, while diagnosing and classifying breast cancer images, there are a lot of

variables like tumor size, shape, homogeneity, etc. that are taken into account by

the physician. Computer based image analysis algorithms can be developed to assist

radiologists in classifying tumor images.

1.2 Background

The major steps involved in image processing are shown in Fig. 1.1 (Jain 2001,

Gonzalez & Woods 2008, Dougherty 2009).

The purpose of each step is described briefly:

1. Image acquisition: to acquire a digital image.

2. Image pre-processing: to improve the image suitable for analysis.

3. Image segmentation: to partition an image into multiple regions and to extract

the region of interest from the remaining.

4. Feature extraction: to convert an input image to a set of features based on

the attributes of segmented image.

2



Chapter 1 Introduction

Fig. 1.1. Steps in image analysis

5. Pattern classification: to classify the given input image based on extracted

features.

Image pre-processing involves techniques such as noise reduction, contrast en-

hancement and image sharpening where both input and output are images. In image

segmentation, regions of interest are extracted from the image. Usually, in feature

extraction and pattern classification, the inputs are images and the outputs are data

(like features of segmented objects) obtained from the images. Different techniques

are used to perform each step in image analysis based on the intended application.

Hence, the technique selected at each step is very important to obtain the desired

result from the algorithm.

1.3 Objectives

The main objective of this work is to apply image analysis to solve problems that

are of interest to industry and medicine. The novelty in this thesis is that an MOO

based thresholding approach has been applied to problems such as segmentation of

3



1.4 Organization of the Thesis

crystals from process images and extraction of tumor portions from breast ultra-

sound images. This thesis shows that the proposed MOO based approach improves

the segmentation quality compared to those obtained using some available single

objectives.

The main objective will be accomplished through the following sub-objectives:

1. Developing a method which selects a suitable threshold for image segmentation

based on multi-objective optimization (MOO) and comparing its results with

a few common thresholding methods.

2. Designing an image analysis algorithm that can estimate CSD from PVM im-

ages and validating this algorithm using a library of artificial images generated

based on certain assumptions.

3. Designing an image analysis algorithm that can assist radiologists in classifying

breast ultrasound images into benign and malignant tumors.

1.4 Organization of the Thesis

The reminder of this thesis is organized into four chapters as follows:

• Chapter 2: Definitions of the terminologies and review of the techniques used

in this thesis are given.

• Chapter 3: Image segmentation based on multi-objective optimization is ex-

plained along with examples and the results are compared with those obtained

from other segmentation methods.

• Chapter 4: Image analysis techniques are applied to two case studies: crystal-

lization process images and breast cancer ultrasound images.

• Chapter 5: The conclusions obtained from this thesis work along with recom-

mendations for possible future research work are provided.
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Chapter 2

DEFINITIONS AND DEVELOPMENTS IN IMAGE

ANALYSIS

Image analysis is a very important tool in today’s world. To understand the devel-

opments in image analysis, one must be familiar with some basic definitions related

to the image analysis domain.

An image is generally a visual representation of some object. An image can be a

photograph captured by an optical device such as a camera or a drawing rendered

manually from the information captured or imagined by the human brain through

the eye.

2.1 Digital Image

An image in the real world is defined as a function of two variables a(x, y) where

a is the amplitude assigned to any coordinate position (x, y) (Gonzalez & Woods

2008). A digital image described in a 2D discrete space is derived from a continuous

image a(x, y) through a sampling process that is referred to as digitization (Young

et al. 1995).

The digitization is done by dividing the continuous image into P rows and Q

columns. The intersection of a row and a column is referred to as a pixel. An

example of a digitized grey scale image is given in Fig. 2.1 1. A continuous grey

scale image is taken and digitized by dividing into P = 9 rows and Q = 12 columns.

Each pixel is given an intensity value depending on the brightness at that particular

1Image Courtesy : MATLAB
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Chapter 2 Definitions and Developments in Image Analysis

Fig. 2.1. Illustration of a digitized image

point. Generally, a grey scale image has 8 bit color depth which indicates 28 = 256

colors. Hence, grey scale intensity value varies from 0 - 255. This process of assigning

intensity values to a pixel is referred to as quantization.

2.2 Image operations

Image operations are performed on an input digital image to result in an output

image based on the user’s requirement. Image operators are classified based on its

function/effect on the image.

2.2.1 Types of operations

Operations performed on digital images are classified into three categories based

on its processing characteristic (Young et al. 1995, Bebis 2004b).

6



2.2 Image operations

The different types of operators are described in Table 2.1 and illustrated in Fig.

2.2.

Table 2.1
Different types of image operations

Operation Description

Point operation The output value of the particular pixel is
dependent only on the input value at that
particular point.

Local operation The output value of the particular pixel is de-
pendent only on the input value in the neigh-
borhood at that particular point.

Global operation The output value of the particular pixel is
dependent on the entire image.

Fig. 2.2. Illustration of different types of image operations

2.2.2 Image neighborhood

While performing local operations, a neighborhood of connected pixels is taken

into consideration. Different types of connectivity are used in defining different types

7



Chapter 2 Definitions and Developments in Image Analysis

of neighborhood (Young et al. 1995). Since we are dealing only with rectangular

sampling (images are digitized by laying a rectangular grid over the continuous

image), only the related types of neighborhood are explained in Table 2.2.

Table 2.2
Different types of neighborhood

Neighborhood Connectivity Description

Von Neumann neigh-
borhood

4-connected Pixels that touches the edges of
the pixel.

Moore neighborhood 8-connected Pixels that touches the edges and
corners of the pixel

The different types of neighborhood are also illustrated in Fig. 2.3.

Fig. 2.3. (a) 4-connected neighborhood and (b) 8-connected neighborhood

2.3 Image histogram

An image histogram is used to plot the frequency distribution of grey level in-

tensities in an image (Gonzalez & Woods 2008). Fig. 2.4 shows the histogram of

the image given in Fig. 2.1. It provides a summary of the intensity level in the

image. Image histogram can be used to obtain the significant range of the grey level

8



2.4 Image analysis

intensities of the image. In Fig. 2.4, the height of the curve denotes the number of

pixels with the given grey level intensity.

Fig. 2.4. Image histogram

2.4 Image analysis

Next, the major steps involved in image analysis are explained along with the

techniques that are used in this work.

2.4.1 Image acquisition

Image acquisition is the process of acquiring a real world image and storing it in

a format (digital image) that can be processed by a computer algorithm (Gonzalez &

Woods 2008). During this acquisition process, a lot of noise may become embedded

in the image posing challenges for the image analysis algorithm.
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Chapter 2 Definitions and Developments in Image Analysis

Noise is defined as random changes introduced into the image due to disturbances

from the environment (Boncelet 2005, Gonzalez & Woods 2008). Noise in the images

can originate due to the sensitivity of camera to light and/or during data transfer

and storage (file formats). Sources of disturbances during image capturing can be

light, equipment error, human error, etc. Disturbances in data storage can be caused

due to file conversion, compression, transfer, etc. At each step, the disturbances can

cause different types of noise. Most noises can be modeled into one of the following

three types.

Additive Gaussian noise is the simplest form of noise. This type of noise can be

described as adding a noise to the image to create a noisy image. Hence, this type

of noise is independent of the pixel value in the image. This noise model is assumed

to follows a Gaussian distribution (Jain 2001). Equation 2.1 describes the additive

noise. The original image is shown in Fig. 2.5(a). Effect of the Gaussian noise on

the original image is shown in Fig. 2.5(b).

Noisy Image = Image+Noise Model (2.1)

Camera sensors are prone to cause noise because of their inability to differentiate

between the photoelectric effect electrons generated by the heat produced in the

system and the electrons generated by the actual signal (Gino 2004). The effect of

this type of noise is generally proportional to the input signal. Hence, the noise is

assumed to be multiplicative in nature. This type of noise is known as speckle noise.

This noise model is encountered in many images. Denoising speckle noises are quite

tricky since it is directly associated with the pixel value (Jain 2001). This can be

seen in the noisy image shown in Fig. 2.5(c).

Errors in data transmission can cause black and white pixels randomly through-

out the image, commonly known as impulse noise. Impulse noise is also known as

salt and pepper noise. This type of noise has the property of changing a random

pixel to either maximum or minimum value. Hence, an image affected with impulse

10



2.4 Image analysis

noise has black or white dots spread over the image (salt and pepper effect). Black

and white dots are visible in the image shown in Fig. 2.5(d).

Fig. 2.5. Effects of different noises on an image

Other than this, there are other models used to describe noise - quantization,

uniform noise and photon counting noise are mentioned in the literature.

2.4.2 Image pre-processing

Image pre-processing is carried out to convert the raw image into a suitable

image for analysis (Jain 2001). This step is characterized by noise removal and

image enhancement. Filtering techniques are commonly used for noise removal.

Different filtering techniques are used to address different types of noises (Gonzalez

et al. 2011). Filters can be classified as linear and non-linear filters. Mean filter is

an example of linear filter. This type of filter performs the averaging operation on
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each pixel in the image within a neighborhood. The most commonly used non-linear

filter is the median filter. Median filter is used to remove distinct odd noises in the

image. In this type of filter, each pixel value in the image is replaced by the median

value of the neighborhood. An example of mean and median filter is shown in Fig.

2.6. The focus in this figure is on the denoising of the pixel at the centre.

Fig. 2.6. Filtering technique

Image enhancement improves the quality of the image by adjusting the contrast

of the image. A few commonly used methods are contrast stretching, histogram

equalization, etc. In contrast stretching technique, the total contrast of the image

is increased. In general, this method is used to convert a narrow range of grey level

intensity values into a wider range. This is done by mapping the intensity values

of the original image into new values by stretching the lower and upper bound to 0

12
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and 255, respectively (Gonzalez et al. 2011). In histogram equalization technique,

the image is transformed such that the image has a desired histogram (Fisher 1997).

This technique is very effective in detailed enhancement and removal of non-linear

errors caused by digitizers.

2.4.3 Image segmentation

Image segmentation is a vital step in image analysis. The objective of image

segmentation is to partition an image into several regions (Gonzalez & Woods

2008). Image segmentation algorithms are based on two properties of intensity

values namely discontinuities and similarities. Methods based on discontinuities in

intensity values identify the images using abrupt changes (edge detection) in inten-

sity values. In the second method, groups of pixels of similar values (homogeneous

regions) are combined together as one class. Techniques such as thresholding and

region growing algorithms fall in this category. The technique used for segmenta-

tion largely depends on the type of image used and the intended application of the

segmented object. Thresholding is simple and easy to implement segmentation tech-

nique. In this technique, a suitable threshold is selected so that the pixels above the

threshold are classified into one class and the pixels below the threshold are classified

into another class. This type of image is known as binary image. A binary image

is defined as an image where the pixel has a value of 0 or 1. Selecting an optimal

threshold is a key challenge faced in the threshold based segmentation technique.

There are many different methods used to select a suitable threshold (Sahoo et al.

1988, Glasbey 1993). Thresholding methods can be broadly classified into six major

categories (Sezgin & Sankur 2004). The categories are explained below:

Histogram shape-based methods: Here, the threshold selection is based on

peaks and valleys of the histogram.

Clustering-based methods: In this method, the grey level intensities are

clustered into two groups namely background and object.

13



Chapter 2 Definitions and Developments in Image Analysis

Entropy based methods: This method uses the entropies of the object, back-

ground and the image to calculate the threshold.

Object attribute based methods: Here, the threshold is obtained based on

the similarity between the binarized and the original grey level image.

Spatial methods: The threshold is calculated using correlations between pixels.

Local method: In this method, an adaptive threshold is found at each pixel

based on local image characteristics.

After image segmentation, morphological operations are applied on the binary

images. Morphological operations are performed to change the structure of the

objects based on the information required (Fisher 1997, Smith 1997). They are used

for representation of image shapes. There are two fundamental morphological image

operations known as dilation and erosion. Erosion operation removes the boundary

particles and hence, the skeleton of the object is obtained. In dilation operation, the

object grows or thickens. The boundary of the objects enlarges to allow the edges to

be continuous. This step increases the areas of the object, reducing the size of the

holes. This operation also has the ability to remove small unwanted objects such as

noise, broken chips, particles touching the border etc.

2.4.4 Feature extraction and classification

Feature extraction is a dimensionality reduction technique. This step is used to

reduce the higher dimensional input data into an output (features) of lower dimen-

sion. In this work, it is used to extract the characteristics of the segmented objects

(Haralick et al. 1973, Choraś 2007). The features extracted can be classified into

different types: texture, shape, color and other basic properties of the object. Some

common features used are:

Texture based features: entropy, energy, mean of grey level intensities.

Shape based features: descriptors, blob detection.
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The extracted features can be used to classify the region of interest with the help

of a suitable classifier. This step is known as pattern classification. In this step,

classification tools assign segmented objects to different classes based on their fea-

tures. Some commonly used classification tools are based on multivariate statistical

methods, neural networks, artificial intelligence based techniques such as decision

trees, etc (Jain et al. 2000, Niuniu & Yuxun 2010).

As mentioned earlier, image analysis has and is increasingly used to solve prob-

lems in industrial, environmental and biomedical domains. Below, we describe two

application areas that this thesis work will focus upon.

2.5 Image analysis in crystallization

Crystallization is one of the basic unit operations employed in the pharmaceutical

industries. The size, shape and purity of the crystal influence further downstream

processing. Hence, it is critical to control the crystallization process. It must be

noted that control of crystallization process is made more challenging because of its

high sensitivity to disturbances (Braatz 2002). Crystal Size Distribution (CSD) is

one of the important characteristics to be monitored and controlled in order to obtain

crystals of desired quality (Larsen, Patience & Rawlings 2006). Techniques such as

laser based Focus Beam Reflectance Measurement (FBRM) and Particle Vision and

Measurement (PVM) are widely used for online monitoring of the crystallization

process.

In FBRM technique, a laser beam is focused using a rotating lens into the crys-

tallizer. The light is scattered when the beam passes through a particle. Based on

the duration required for the light to scatter back, the chord length of the particle

is measured. The major drawback in the FBRM technique is that the chord length

distribution measured is not the actual particle size distribution since the chord

length measured randomly may not represent the entire particle. This limitation

can be overcome with the use of PVM technique as direct measurement from the
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process image is possible (Presles et al. 2010). In PVM technique, the process images

are captured either as videos or pictures with the help of a camera; these pictures

are analyzed to get direct estimate of CSD (Patience & Rawlings 2001, Zhou et al.

2009).

In crystallization imaging techniques, CSD can be estimated from crystalliza-

tion images by segmentation, where, crystals are extracted from the background.

However, segmentation of the crystal image poses a challenge due to crystal over-

laps and disturbances in the system such as agglomeration, breakage and attrition.

Once crystals are segmented from the image background, size and shape descriptors

are used to characterize possible crystal shapes. These descriptors are used to ex-

tract features (properties) such as size, aspect ratio, roundness, etc (Lovette et al.

2008).

2.5.1 Literature on estimation of CSD based on image analysis

Pons and Vivier used offline image analysis to characterize crystal shape and

determine its structural parameters (Pons & Vivier 1990). Plummer and Kausch

measured CSDs of crystallized polyoxymethylene under a microscope (Plummer &

Kausch 1995). Monnier et al. used offline image analysis to estimate CSDs and

compared it with in situ laser measurements (Monnier et al. 1997). Puel et al. used

image analysis to evaluate shape factors by measuring two characteristic lengths

(length and width) (Puel et al. 1997). These shape factors were used to quantify the

habit of the crystals. Similar method was used to evaluate shape factors of crystal

in batch processes (Puel et al. 2003, Oullion et al. 2007). Korath et al. measured

CSD accounting for touching particles as well (Korath et al. 2006, 2007). Zhou et al.

combined image processing techniques with statistical multivariate image analysis

to characterize shape and size of the crystal (Zhou et al. 2006). Mironescu et al.

used fractal analysis to estimate CSD (Mironescu & Mironescu 2006). Larsen et al.

developed an image analysis algorithm based on linear features for segmenting needle
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shaped particles (high aspect ratio particles) (Larsen, Rawlings & Ferrier 2006).

Later, they extended it to be used for other shapes as well (Larsen et al. 2007).

Presles et al. developed an algorithm by modifying the watershed segmentation and

validated the algorithm through experimental and simulated results (Presles et al.

2010). A summary of methodologies used in the reviewed works along with their

main characteristics is given in Table 2.3.

2.6 Image analysis in breast cancer detection

Breast Cancer is the most frequently diagnosed cancer and the leading cause of

cancer death among women. Breast cancer accounts for 23% of the total cancer

cases and 14% of the total cancer deaths among women (Jemal et al. 2011). The

best way to reduce the number of cancer deaths is to diagnose and treat the disease

at earlier stages. Therefore, a good reliable approach is required for detection and

diagnosing breast cancer. Such an approach should be able to distinguish between

benign and malignant tumors with low false positive and false negative rates (Cheng

et al. 2010). Mammography is a widely used technique for detecting and diagnosing

breast tumors. However, this technique has certain limitations for breast cancer

detection. Mammography technique uses X-rays (ionising radiation) for the detec-

tion. Detection based on mammography has high rate of false positives resulting in

a number of unnecessary biopsies (Fordham 1977, Cheng et al. 2010). Mammog-

raphy cannot detect breast cancer in women with dense breasts. However, these

limitations can be overcome by using ultrasound imaging. Ultrasound technique

has an advantage of being a very safe and convenient technique since it does not use

radiation. Ultrasound technique also works out to be less expensive compared to

mammography. Ultrasound has a very good detection rate in differentiating cysts.

Ultrasound based detection does not have trouble imaging in women with dense

breasts.
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Generally, radiologists diagnose breast cancers by analyzing the ultrasound im-

age for information. However, they are required to be very well trained to detect

cancers using ultrasound. Hence, the detection of breast tumor is largely human

dependent and is prone to a high inter-observer variation. Therefore, there is a need

for computer-aided diagnosis (CAD) to assist radiologists in tumor classification

(Hadjiiski et al. 2006).

2.6.1 Literature on breast ultrasound images detection and classification

based on image analysis

Chen et al. used local neighborhood statistics based features as the criterion to

classify breast tumors (Chen 1999). Horsch et al. developed an efficient algorithm

for segmenting potential tumor regions based on their margins (Horsch et al. 2001).

Joo et al. used image analysis to identify benign nodules in ultrasound images to

avoid unnecessary biopsies (Joo, Moon & Kim 2004, Joo, Yang, Moon & Kim 2004).

Chang et al. developed an algorithm which used morphological features to classify

breast tumors (Chang et al. 2005). Moon et al. applied the same algorithm with

different set of features to continuous ultrasonographic images (Moon et al. 2005).

Similarly, a number of works to identify benign tumors from malignant exist in the

literature. Song et al. compared two different classification techniques to classify

breast sonograms based on shape and margin features (Song et al. 2005). Cheng

et al. presented a review on CAD of breast cancer using ultrasound images and

compared different techniques with their advantages and disadvantages (Cheng et al.

2010). It is evident from literature that tumor can be segmented from ultrasound

images. The features from the segmented tumors can be used for classifying tumor

into benign or malignant. The methodologies used in the literature are summarized

in Table 2.4.
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2.7 Challenges in image analysis

The problems faced in the application of image analysis along with possible ways

to overcome them are discussed here.

Image segmentation is a critical step in image analysis since good results from

the segmentation step is vital for feature extraction. Therefore, a good segmen-

tation technique has to be used for effective image analysis. In this work, image

thresholding is preferred because of its simplicity and easy implementation. Hence,

a suitable method has to be chosen to obtain the optimal threshold. The most

common methods used for selecting an optimal threshold are mode method, Otsu

method, minimum error method and entropy based method. The origins of these

methods are explained below.

Mode method is a type of histogram shape based thresholding method. It uses

the concept of valley to calculate the threshold. In this method, the threshold

is selected as the minimum intensity value in the valley between the two peaks

(object and background) (Prewitt & Mendelsohn 1966). Otsu method and minimum

error method are clustering based methods. Otsu method uses the variance of the

background and object pixels (Otsu 1979). The optimal threshold is obtained by

maximizing either the variance between the two classes or minimizing the variance

within the same class. Minimum error method assumes two Gaussian distributions

to fit the image histogram (Kittler & Illingworth 1986). The two distributions are

assumed to correspond to the object and background. The threshold at which the

Gaussian distributions fit the actual histogram with minimum error is taken as the

optimal threshold. Entropy method uses the entropy of the image to calculate the

threshold (Pun 1980, Kapur et al. 1985). The optimal threshold is selected such

that the sum of the entropy of the two classes (object and background) reaches its

maximum.

These methods work well for ideal images (objects and background with distinct

grey level intensities). However, these methods do have limitations while applied to
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real world images (Bebis 2004c, Sezgin & Sankur 2004). Hence, these methods can

be combined in a way so that the weakness of each method can be overcome and

better quality information can be extracted from the images. For example, multi-

objective optimization can be applied to obtain the optimal threshold by combining

the objectives from the two thresholding methods. Some works reported in the

literature do use the MOO approach to obtain the optimal threshold. They are

listed below.

Nakib et al. used modified within-class variance and overall probability of error

as the two objectives and solved the MOO by using weighted sum method and en-

hanced simulated annealing (Nakib et al. 2007, 2008). Later, they considered modi-

fied within-class variance and entropy criterion as the two objectives and solved the

MOO using a non-Pareto approach (Nakib et al. 2009a,b). Xinming and Chunhong

used 2D entropy criterion and 2D Otsu method as their objectives and solved it

using weighted sum method and simulated annealing (Zhang & Liu 2009). Later,

Nakib et al. used biased intraclass variance, Shannon entropy criterion and 2D en-

tropy criterion and solved it using NSGA II (Nakib et al. 2010). These methods

have been found to be successful on simple images. However, these methods are yet

to be tested in real-world applications.

In this work, an MOO based image thresholding is used. The objective functions

used in this work are between-class variance and minimum error. MOO problem is

solved using simulated annealing because of its ability to effectively handle combi-

natorial problems. The developed method is tested on several examples including

the estimation of crystal size distribution for crystallization process control and to

segment ultrasound images for classifying tumors in breast cancer screening cam-

paigns.
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Table 2.3
Developments in image analysis for application in crystallization

Year Author Methodology Remarks

1990 Pons and Vivier Thresholding Offline imaging
Morphological processing
Polygonal representation

1995 Plummer and Spatial filter Offline imaging
Kausch Thresholding

Particle detection routine

2006 Korath et al. Median filter Separates touching
2007 Otsu thresholding particles.

Morphological processing Error in measurement
Particle counting technique due to erosion

2006 Zhou Ying et al. Contrast-limited adaptive Error in measurement
2009 histogram equalization due to random orient-

Canny edge detector ation of particles.
Morphological processing Currently applied to
Rotating clipper method square and diamond
Multiway principle compo-
nent analysis for classifica-
tion

morphologies

2006 Mironescu et al. Thresholding Fractal analysis to cal-
Box counting method culate the dimension

2006 Larsen et al. Segmentation for High-
Aspect-Ratio Crystals
(SHARC)

Novel method for nee-
dle shaped particles

2007 Larsen et al. Model-based SHApe
Recognition for Crystals
(M-SHARC)

Extended the SHARC
method for other
shapes

2010 Presles et al. Watershed segmentation
method

Validation through
experimental method

Image Restoration to con-
struct the particle outside
the focal plane

and computer simula-
tion. Computation-
ally intensive.
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Table 2.4
Developments in image analysis for application in breast cancer detection

Year Author Methodology Remarks

1999 Chen et al
Feature extraction - statistics
based on local neighborhood

This methodology can
be used to cross check

Classification - artificial neural
networks

for physicians. Tested
on small datasets

2004 S Joo et al. Median filtering - filter size (4X4) This method selects
Thresholding - valley based the region of interest
Morphological image processing manually.
Feature extraction - spicula-
tion, ellipsoid shape, brightness,
branch pattern and number of
lobulations
Classification - artificial neural
network

2005 Chang et al Anisotropic diffusion filtering and
stick method

Morphological fea-
tures used to overco-

Thresholding - level set method me the drawback of
Feature extraction - form factor,
roundness, aspect ratio, convex-
ity, solidity and extent

using different imag-
ing systems.

Classification - support vector
machines

2005 Moon et al. Anisotropic diffusion filtering and
stick method

Continuous and non-
continuous images

Thresholding - level set method were compared for
Feature extraction - contour dif-
ference, shift distance, area differ-
ence and solidity

tumor classification.

Classification - support vector
machines

2005 Song et al. Feature extraction - margin
sharpness, margin echogenicity,
angular continuity, tissue atten-
uation, mass attenuation, and
excess attenuation

Logistic Regression is
superior in high sensi-
tivity region and neu-
ral networks work bet-
ter in high specificity

Classification - artificial neural
networks, logistic regression

region.
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Chapter 3

MULTI-OBJECTIVE OPTIMIZATION BASED IMAGE

THRESHOLDING

Image segmentation is an important step in image analysis since the result of seg-

mentation plays a vital role in feature extraction. Image segmentation is defined

as the process of extracting information from an image by partitioning the image

into multiple regions. Segmentation is performed based on grey level intensities of

the image. Image thresholding is an easy and simple image segmentation technique.

This method partitions an image into regions based on a predefined criterion. The

challenging aspect of image thresholding is to select a suitable threshold. Many

strategies are available to select the threshold. One common strategy is to make use

of the image histogram to choose the threshold. An image histogram is based on

the number of pixels that have the same grey level intensity value. Single objective

optimization (SOO) has been used to find a suitable threshold based on the image

histogram. There are different methods that use SOO to find a suitable threshold.

Some available methods are Otsu method, minimum error method, mode method

and entropy method. In this method, Otsu method and minimum error method are

used because their performance is better than entropy and mode method in most

cases. Two methods used in this work are explained in detail.
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3.1 Optimization based on single objective

3.1.1 Otsu method

Otsu developed a method for obtaining an optimal threshold based on maxi-

mizing the inter-class variance (Otsu 1979). This method involves calculating the

variance of the two classes of pixels at all possible threshold values. The objec-

tive of the method is to maximally separate the two types of pixels. The optimum

threshold is obtained by maximizing the between class variance.

For a given image, an image histogram is calculated such that the number of

pixels at each grey level i is denoted by ni. N is the total number of pixels in the

image and L is the number of grey levels in the image. The histogram is normalized

into a probability distribution.

pi = ni/N (3.1)

The zeroth and first-order cumulative moments of the histogram up to the kth

grey level are given by equations 3.2 and 3.3, respectively, and the total mean level

of the original image is given by equation 3.4.

ω(k) =
k∑

i=1

pi (3.2)

µ(k) =
k∑

i=2

ipi (3.3)

µT = µ(L) =
L∑
i=1

ipi (3.4)

The objective function for maximizing the between class variance is

σ2
B(k) =

[µTω(k)− µ(k)]2

ω(k)[1− ω(k)]
(3.5)
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The k value for which equation 3.5 is maximized is the optimum threshold T ,

where 1 < k < L.

3.1.2 Minimum error method

In this method, a classification approach is used to select a suitable threshold. If

the grey level distribution of the object and background can be estimated, the min-

imum error based threshold can be obtained. The assumption used in this method

is that the estimated object and background populations are normally distributed.

Based on this assumption, Gaussian curves can be fitted for the object and back-

ground distributions by estimating their mean, standard deviation and probability

and thereby obtaining the optimum threshold.

Kittler and Illingworth (Kittler & Illingworth 1986) proposed a simple technique

using the above concept. In this method, the image is represented by a histogram

denoted by h(g). Here, thresholding is performed on the image at some arbitrary

level T ; then the resulting object and background populations can be modeled by a

normal distribution h(g) with parameters µi(T ) and σi(T ) and a priori probability

Pi(T ). The parameters are defined by equations 3.6, 3.7 and 3.8.

Pi(T ) =
b∑

g=a

h(g) (3.6)

µi (T ) =

[
b∑

g=a

h (g) g

]
/Pi (T ) (3.7)

σ2
i (T ) =

[
b∑

g=a

{g − µ(T )}2h(g)g

]
/Pi(T ) (3.8)

where a and b are given by equations 3.9 and 3.10, respectively

a =

 0 i = 1

T + 1 i = 2
(3.9)
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b =

 T i = 1

n i = 2
(3.10)

The function to be minimized for obtaining the optimal threshold is given by

equation 3.11. The equation represents the probability of error between the actual

histogram and the assumed object and background distributions.

J(T ) = 1+2[P1(T ) log σ1(T )+P2(T ) log σ2(T )]−2[P1(T ) logP1(T )+P2(T ) logP2(T )]

(3.11)

The optimal threshold is found by selecting T such that the above function

returns a minimum value.

3.2 Multi-objective optimization

The segmentation process is often always based on the optimization of a single

objective function (Sahoo et al. 1988). The segmentation performed based on the

above mentioned methods works well for many cases. However, each method has

its own limitations. Otsu method breaks down when the sizes of the two classes

are very unequal resulting in more than one maxima and consequently missing the

global threshold (Bebis 2004c). Kittler method fails when the two histogram modes

are not distinguishable as the result of bias due to the estimation of mean and

variances from the truncated distribution (Sezgin & Sankur 2004). The weakness of

the individual methods can be improved by applying a hybrid approach involving

both the objectives to improve the segmentation process. Hence, a multi-objective

optimization problem can be solved to obtain an optimum threshold.

Multi-objective optimization (MOO) is the process of optimizing two or more

conflicting objectives simultaneously subject to certain constraints. MOO has ap-

plications in various fields such as product design, medical, automobile, oil and gas

26



3.2 Multi-objective optimization

industry, etc (Rangaiah 2009). MOO is performed where decisions are to be taken

by a trade-off between the conflicting objectives. Upon solving a MOO problem, a

set of solutions known as the Pareto front is obtained. Based on the knowledge of

the system and the user requirement, the user can select a solution from the Pareto

front for implementation. A Pareto front is defined as a set of solutions which are

non-dominated to each other, i.e. any solution in the set cannot replace another

solution in the set to improve an objective without worsening another objective.

For example, let us consider a MOO problem with two conflicting objectives f1 and

f2 that are to be minimized. Upon solving the problem, we can obtain a solution

vector x = [x1, x2, x3, xn]. A solution xi is said to be dominating another solution

xj, if the conditions f1(xi) < f1(xj) and f2(xi) < f2(xj) hold true. A solution xi

is said to be a Pareto solution, if there doesnt exist any solution xj such that it

dominates xi within the solution space (Tamaki et al. 1996, Miettinen 1999).

There are many methods available to solve MOO problem. Some methods used

for obtaining Pareto optimal solutions are weighting method, ε-constraint method,

non-dominated sorting genetic programming (NSGA-II), etc. The first two ap-

proaches convert the MOO problem into a SOO problem and solve the problem

using SOO problem solving methods (Miettinen & Hakanen 2009). NSGA-II is an

evolutionary algorithm, inspired by the natural evolution process (Srinivas & Deb

1994). In this method, a population of solutions is generated stochastically and

then this population is evolved through genetic operations into a more appropriate

solution over several generations.

3.2.1 Converting a MOO problem into a SOO problem

In this method, the weighted sum approach is used to solve the MOO problem.

The weighted sum method is the simplest method to solve a MOO. This method can

be used to solve a MOO when the problem solution is convex (Miettinen & Hakanen

2009). In this approach, the set of objectives is scalarized into a single objective
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by multiplying each objective with the help of a certain weight and aggregating the

objectives together. The formulation of the weighted sum approach is given by

minimize
k∑

i=1

wifi(x)

subject to x ∈ S
(3.12)

The conditions to be considered for applying this method.

1. Objectives are normalized in order to scale them to the same magnitude.

2. Weights must be nonnegative and must lie between 0 to 1, that is, wi ∈ [0, 1].

3. Sum of all weights should be equal to 1, that is
k∑

i=1

wi = 1 .

4. For mixed optimization problems (min-max), we need to convert all the ob-

jectives into a single type.

A Pareto front can be obtained by solving the SOO for different values of the

weights. The weights are also known as importance factors as they measure the

importance of each objective in the process. The problem is solved for many discrete

values of weights in the range [0, 1]. The solution obtained is considered Pareto

optimal if the weighting coefficients are positive. Based on the users requirement,

he/she can select a solution from the Pareto front. In our work, we have used

simulated annealing to solve the SOO problem obtained by converting the MOO

problem.

3.2.2 Simulated annealing

Simulated Annealing (SA) is a random search method used for obtaining global

optimum in a search space and is employed mainly for handling discrete optimization

problems (Dowsland 1993). This method was inspired from the idea first presented

by Metropolis et al. (Metropolis et al. 1953) in 1953 to simulate the metal annealing

process. Annealing is a heat treatment technique to cause changes in the structural
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properties of a solid. This process is carried out by heating the material above

its melting point and sustaining a suitable temperature and then cooled back to

the solid form. The slow cooling allows the process to reduce the defects in the

material. On rising the temperature, the atoms are freed from their initial locations

and randomly move through states of higher energy; the slow cooling process allows

the atoms to find a lower energy state than the initial states. Such a process is

simulated by considering the material as a system of particles. Metropolis et al.

simulated the change in energy of the system while the system is cooled till it

reaches a steady state. Metropolis et al. calculated the new energy state and then

compared it to the current state. If the energy has decreased, it is accepted as the

next state. If the energy has increased, then the new state is accepted as the next

state according to a probability function. This probability is defined based on the

law of thermodynamics. At any temperature t, the probability of an increase in

energy by magnitude δE is given as

p(δE) = exp

(
−δE
kt

)
(3.13)

where k is the Boltzmann constant. The process of calculating the new state

is repeated for a number of iterations at each temperature after reducing the tem-

perature at a given rate till the system reaches a steady state. Kirkpatrick et al.

(Kirkpatrick et al. 1983) and Černý (Černý 1985) independently applied this strategy

to search for global optimum in optimization problems by comparing the problem

with the cooling process.

Local search algorithms like hill descent method end up obtaining local optimum

for the optimization problem based on the initial guess solution. To overcome this

limitation, a few uphill moves can be performed based on a probability criterion

to move towards the global optimum. The difference between the random descent

method and simulated annealing method is that the annealing method allows a few

uphill moves based on the probability calculated by equation 3.13.
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The algorithm for simulated annealing can be summarized as:

1. Select an initial state s0. Calculate the energy of the state f(s0).

2. Select an initial temperature t0 > 0.

3. Select a rate of cooling α.

4. Randomly select a new state s from the neighborhood of s0. Calculate the

energy of the new state, f(s).

5. If f(s) < f(s0) then take s0 = s. Else generate random number g uniformly

distributed in the range [0, 1]. Check if g < exp((f(s0)− f(s))/t), then take

s0 = s. Otherwise stay at state s0. Repeat the steps 4 and 5 until a certain

number of iterations are performed.

6. Reduce the temperature at a certain cooling rate and repeat steps 4 to 6 till

a steady state temperature is reached; s0 is the approximation to the optimal

solution.

The flow sheet of this algorithm is shown in the Fig. 3.1.

3.3 Problem formulation

The objective of the optimization process here is to find the optimum threshold

value that can be used to best segment the grey level image. Two objectives are

considered here. One of the objectives is to maximize the inter-class variance and

the other objective is to minimize the error. This is a mixed optimization problem.

Therefore, the first objective is changed appropriately into a minimization problem

- the final objective required to be minimized is therefore formulated as in equation

3.14.

F (t) = w1 ∗
1

σ2
B (t)

+ (1− w1) ∗ J(t) (3.14)
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3.3 Problem formulation

Fig. 3.1. Steps involved in simulated annealing

where σB and J are defined as in equations 3.5 and 3.11 respectively.
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Both the objective functions are normalized to similar magnitude in order to

avoid biasing the main function. The search space varies from 0 to 255 indicating

the grey level intensities of the image. Though the problem is of the type of com-

binatorial optimization, exhaustive enumeration cannot always be used to search

the entire solution space due to high computational cost. Therefore, simulated an-

nealing is used to determine the global optimum. Due to the annealing process,

this method can find the global (or near global) optimum for problems which have

numerous local optima. The optimization is carried out by varying the weight w1

from 0 to 1. Since the Pareto optimal front for this problem is convex, the weighted

sum method gives the Pareto frontier.

Once a Pareto front is obtained, an optimal solution can be selected based on a

priori knowledge. Since we do not have any a prior i knowledge to select an optimal

solution, post-Pareto-optimality analysis is carried out using the L2-norm method

to find an optimal compromise solution (Kasprzak & Lewis 2001). This method uses

the concept of utopia point to find the optimal solution. Utopia point is defined as

the theoretically best achievable point and is assumed to be the origin in most cases.

In our approach, L2-norm method finds the solution that is geometrically closest to

the utopia point (assumed to be the origin).

The segmentation quality is evaluated by calculating the error in pixel classifica-

tion. The error in pixel classification is found by calculating the sum of number of

pixels wrongly classified (i.e. background pixel classified as object and object pixel

classified as background) (Bhanu et al. 1995). In this thesis, all the image analysis

steps were performed in Matlab 7.11.0 (R2010b).

3.4 Results and discussions

In this work, the above explained MOO based segmentation along with morpho-

logical operations was tested on several images. Two examples are shown and the

results are discussed. The pre-processed images were segmented by three different
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3.4 Results and discussions

Fig. 3.2. Illustration of the L2-norm based optimal compromise so-
lution extraction from the Pareto front

methods: (i) Otsu method, (ii) minimum error method, and (iii) Multi-objective

optimization based segmentation method and the results are compared with each

other.

3.4.1 Example 1

A greyscale image of a spider is taken to test the algorithm. The image is shown

in Fig. 3.31. The MOO problem is solved for different values of weight w1.

The Pareto front is obtained by plotting the first objective function along the

x-axis (in logarithmic scale) versus the second objective function along the y-axis.

The optimal threshold obtained using the L2-norm method is shown in the Pareto

plot given in Fig. 3.4. The thresholded image obtained from Otsu and minimum

error method is shown in Fig. 3.5(a) and (b), respectively.

The image obtained by thresholding using the optimal threshold calculated by

the MOO method is given in Fig. 3.5(c). From Fig. 3.5(a), it is clear that Otsu

1Image Courtesy: Wikimedia Commons
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Fig. 3.3. Image - Example 1

method segments the complete region of interest, but fails to differentiate between

the darker pixels of the background and the image of the spider. Similarly, from Fig.

3.5(b), it can be said that the shape of the spider is identified. In Fig. 3.5(c), it can

be seen that MOO based thresholding not only identifies the complete outline of the

spider but also identifies some pixels which are missed out by the minimum error

method. This comparison can be further verified by calculating the misclassification

rate of each segmentation method. The misclassification rates of the three thresh-

olding methods for this example is shown in the first row of Table 3.1. From Table

3.1, it is clear that thresholding based on MOO is better than thresholding based

on Otsu method by a significant extent. The MOO based method outperforms the

minimum error method albeit by a small amount.
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3.4 Results and discussions

Fig. 3.4. Pareto plot - Example 1

Fig. 3.5. Example 1: (a) - Otsu method (b) - Minimum error method
and (c) - MOO based segmentation
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3.4.2 Example 2

An infrared image of an aircraft model shown in Fig. 3.62 is taken for segmen-

tation.

Fig. 3.6. Image - Example 2

The Pareto front (shown in Fig. 3.7) is obtained by plotting the objective func-

tion values in a fashion similar to example 1. Optimal threshold obtained using the

L2-norm method is used for the segmentation of the actual image. In the Pareto plot,

it can be noted that there is a gap between the set of Pareto solutions. This shows

that those regions do not contain non-dominated solutions. The thresholded images

obtained from the three methods are shown in Fig. 3.8(a), (b) and (c) respectively.

In this example, it is clear that Otsu method captures the outline of the aircraft

while the minimum error method based thresholding captures the shape of the air-

craft precisely along with some noise in the background. From Fig. 3.8(c), it can

2Image Courtesy: ThermoAnalytics.com - reproduced with permission
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3.4 Results and discussions

Fig. 3.7. Pareto plot - Example 2

be seen that MOO based thresholding captures the shape of the aircraft completely

and avoiding the noise captured by minimum error method. The performance is

validated from the misclassification rates shown in the last row of Table 3.1.

In Table 3.1, it can be noticed that misclassification rate of minimum error

method is higher compared to the Otsu method and MOO based thresholding

method. The misclassification rate confirms the fact from the figures that Otsu

method outperforms the minimum error method, while MOO based thresholding

fares better than both the methods.

Table 3.1
Misclassification rate for general images

Image Name Otsu Method Minimum Error Method MOO based segmentation

Example 1 56.34 18.83 16.67
Example 2 19.29 59.63 1.49
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Fig. 3.8. Example 2: (a) - Otsu method (b) - Minimum error method
and (c) - MOO based segmentation

From Fig. 3.5, 3.8 and Table 3.1, it can be said that Otsu method performs better

than the minimum error method when the object is lighter than the background

and vice versa. The MOO based thresholding approach is found to be very effective

for thresholding different types of images. This method was tested on several other

examples and case studies to check the effectiveness of the algorithm. Therefore, the

proposed method may be very useful for solving real world image analysis problems.
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Chapter 4

IMAGE ANALYSIS APPLICATIONS FOR

REAL-WORLD PROBLEMS

Image analysis plays a major role in various fields like manufacturing and medical

imaging. Machine vision is regarded as one of the strategic technologies in manufac-

turing industries due to increasing demands to maintain high quality of the product

(Steger et al. 2008). Machine vision applications include quality and process con-

trol in manufacturing process. In a crystallization process, process control plays a

vital role to obtain crystals of desired quality - size, shape, morphology etc. CSD is

one of the characteristics to be monitored at continuous intervals for crystallization

process control. Image analysis methodologies can be used to estimate CSD from

PVM images and contribute to improved control of an ongoing crystallization pro-

cess. In this chapter, we will show how the MOO based segmentation method can

be applied to perform inline monitoring, based on images obtained from a simulated

crystallization process.

Medical image analysis is used to extract meaningful information about the phys-

iological processes or organs of the body (Dhawan 2011) by analyzing the images

obtained using medical imaging. Medical imaging is the process of acquiring im-

ages of the body using different imaging techniques such as ultrasound, radiology,

magnetic resonance imaging (MRI), etc. The purpose of medical image analysis is

either for diagnosing the body for illness or to develop medical science (to study the

normal functioning of the body). The main advantage of medical imaging is that

it is considered as a non-invasive procedure to investigate the internal parts of the

body to design and develop methodologies for the diagnosis of diseases.
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In this chapter, image analysis is applied to two case studies. The first case

study involves the estimation of crystal size distribution (CSD) from PVM images.

In this work, artificial images representing crystals from a crystallization process

are generated. Then, CSD is estimated using MOO based image thresholding fol-

lowed by feature extraction. The obtained CSD from the automated procedure is

compared with the actual CSD used to generate the artificial images. The second

application concerns the automated classification of breast tumors using ultrasound

images. MOO based thresholding approach is applied to the breast ultrasound im-

ages followed by feature extraction to obtain the properties (such as size, shape, etc.)

of the tumor. These properties can assist radiologists while classifiying the breast

tumor (as benign or malignant). MOO based thresholding approach has not been

used for segmentation previously for such problems. Therefore, this thesis applies

such MOO based approach to improve the segmentation quality for achieving better

detection and diagnosis of tumors.

4.1 Case I - Estimation of crystal size distribution: image

thresholding based on multi-objective optimization

The motivation for this problem has been discussed in detail in Section 2.5. Here,

application of image analysis on the crystallization process images is described along

with its results. The objective is to estimate the CSD from the simulated images

and validate the algorithm with data used to generate artificial images.

4.1.1 Image acquisition

Artificial images were generated randomly by considering a certain camera model

to depict the assumed process model.
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4.1 Case I - Estimation of crystal size distribution: image thresholding based on
multi-objective optimization

Camera model

The method of mapping points from a real world 3-dimensional plane onto an

imaginary 2-dimensional plane is known as projection. When the human eyes look at

a scene, objects farther away appear smaller than the objects close by-this property

is known as perspective. Orthographic projection is a projection method where

the object is mapped onto an imaginary plane without considering the distance

of the object from the observer. Orthographic projection is used to create images

to scale drawings. This projection allows making accurate measurements. When

a perspective projection is approximated using a scaled orthographic projection,

it is known as weak perspective projection. This projection is considered when the

objects dimensions are small compared to its distance from the camera. The camera

model is explained in the literature (Bebis 2004a).

Fig. 4.1. Weak perspective projection
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Process model

The first step is to define a process model bearing in mind certain number of

assumptions. In this work, the particles are assumed to be needle shaped. Gen-

erally, needle shaped crystals are observed in crystallization processes involving

monosodium glutamate, calcium pyrophosphate dehydrate, monosodium urate, etc.

Solid phase particles dispersed in a crystallization solution bath is assumed to be

the process model. Let us assume a volume V to be the imaging volume captured by

the camera. Assume n solid particles are captured in the imaging volume. Let the

characteristic length of each particle in the given volume be denoted by l. Hence,

the CSD in the imaging volume is given by a function f(l).

In this process model, the particle population is simulated by randomly gen-

erating several parameters such as the position of the particle, orientation of the

particle and dimensions of the particle. The orientation of the particle in the image

plane is distributed normally. The dimensions and position of the particle in the

image plane are distributed uniformly for illustrative purposes. The parameters are

generated randomly independent of each other.

The transformation from a 3D point X, Y and Z in real-world coordinates to

an image point xI and yI is given by equation 4.1, where fl is the focal length of

the camera.

xI =
flX

Z
; yI =

flY

Z
(4.1)

Assumptions

The real world coordinates are mapped into coordinates on the image plane. It

is assumed that the depth of the imaging volume is very small compared to the

fixed distance between the camera and the imaging volume since the distance of the

camera from the particle will be greater than the depth of the particle. Hence, weak
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4.1 Case I - Estimation of crystal size distribution: image thresholding based on
multi-objective optimization

perspective projection model is used to project the imaging volume onto the image

plane. The particles are scaled by a constant ratio.

Generally, the crystallization process is assumed to take place in a well stirred

vessel, and hence the particles are expected to align parallel to the surface of the

solution due to the shear force between the surface of the particle and the solution.

Therefore, the particles are assumed to be orthogonal to the cameras optical axis

and thereby mimic the actual condition used for imaging measurements. A similar

artificial image generation technique was used in (Larsen & Rawlings 2008) to sim-

ulate crystallization images. However, in contrast to the work presented in (Larsen

& Rawlings 2008), in our work, the intensity values of the background and parti-

cles are also generated stochastically. Also, more importantly, in our work, noise

is incorporated in to the generated images so as to mimic images obtained from

industrial crystallization processes.

The intensities of the slurry and the particles were generated randomly indepen-

dent of each other and distributed uniformly. Particle overlaps were also added to

the system stochastically. Speckle noise (process noise) of mean = 0 and variance =

0.02 was added into the image plane. Some broken particles and small particle chips

were also added randomly to the image plane. Imaging volume is taken to be large

enough so that all the particles generated stochastically are contained within the

imaging plane itself. Hence, limits have been set while generating the coordinates

and dimension of the particle so as to make sure the generated particle remains

within the imaging plane. An image generated with the help of the above algorithm

along with an image from a real crystallization process is shown in Fig. 4.2.

4.1.2 Image pre-processing

Generally, a digital image is represented as a three dimensional matrix indicating

each of the basic colors red, green and blue. These images are first converted to single

dimensional matrix for further processing. The single dimensional matrix represents
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Fig. 4.2. (a) Artificial image (b) Real-world image

the grey level intensity at each pixel. The grey level matrix GL is computed as the

weighted sum of the three dimensions (red R, green G and blue B) given by equation

4.2 (Nagabhushana 2006).

GL = 0.299 ∗R + 0.5870 ∗G+ 0.1140 ∗B (4.2)

The objectives of pre-processing include noise removal and image enhancement.

The grayscale images contain a considerable amount of noise. Generally, image

noises in crystal images are due to the sensitivity of camera and during data transfer

and storage (file formats). The types of noise associated with this type of images

cannot be removed with the help of a linear filter. Therefore, a type of non-linear

filter called the median filter is used to remove noise from the images considered

in this work. This type of filter is useful in removing impulse and speckle noise

44
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(Gonzalez & Woods 2008). This type of filter has the additional advantage of

preserving the edges of objects and is very apt for the current application.

The other purpose of pre-processing is to enhance the quality of the image.

Contrast enhancement is applied to images to widen the range of the grey level

intensity.

4.1.3 Image segmentation

In this work, image segmentation is performed based on the method explained in

Chapter 3. Morphological operations are performed on the binary image to remove

unwanted disturbances such as broken particles and small chips. This methodology

was tested on several images. Two examples are shown and the results are dis-

cussed. The pre-processed images were segmented by three different methods (i)

Otsu method, (ii) minimum error method, and (iii) Multi-objective optimization

based segmentation method and the results are compared with each other. In this

work, the original Otsu and minimum error methods are used without any modifi-

cations (Otsu 1979, Kittler & Illingworth 1986).

Example 1

In the first example, we consider an image with few crystals, considering that

the process is in the initial stages. The MOO problem is solved for different values

of weight w1.

The Pareto front is obtained by plotting the first objective function along the x-

axis on logarithmic scale versus the second objective function along the y-axis. From

Fig. 4.3, it can be observed that there is a gap in the Pareto front, which shows that

there is no non-dominated solution in that space. The optimal threshold is obtained

by using the L2-norm method. This threshold is used for the segmentation of the

process image shown in Fig. 4.4(a). The image obtained after thresholding using

the Otsu and minimum error methods are shown in Fig. 4.4(b) and (c), respectively.
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Fig. 4.3. Pareto plot - Crystallization example 1

The image obtained by thresholding using the optimal threshold calculated by

the MOO method is given in Fig. 4.4(d). From Fig. 4.4(d), it is clear that Otsu

method segments the particles of darker intensity clearly, but while dealing with

lighter intensity particles it fails to differentiate between the background and the

object. Similarly, from Fig. 4.4(c), it can be said that outline of the most particles

are identified but the complete shape of the particles are not characterized properly.

In Fig. 4.4(d), it can be seen that MOO based thresholding overcomes the limitations

of the other methods and identifies most particles completely. This comparison

can be further verified by calculating the misclassification rate of the segmentation

method. The misclassification rates of the three thresholding methods are shown in

Table 4.1. From row 1 of Table 4.1, it is clear that the misclassification with the

MOO approach is very less compared to the misclassification when the thresholding

is based on Otsu or minimum error method.
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multi-objective optimization

Fig. 4.4. Crystallization example 1 (a) - Original image, (b), (c),
(d) Image after thresholding using Otsu method, Minimum error
method, and MOO based segmentation respectively

Example 2

In the second example, the number of particles in the image is increased. This is

to simulate the later stage of a crystallization run during which we expect to have

more crystals in the crystallizer.

The Pareto front (shown in Fig. 4.5) is obtained similar to example 1. Optimal

threshold obtained using the L2-norm method is used for the segmentation of the

process image shown in Fig. 4.6(a). The images obtained after thresholding using

the three considered methods (Otsu, minimum error and MOO based approach) are

shown in Fig. 4.6(b), (c) and (d) respectively. Similar to what was seen in example

47



Chapter 4 Image Analysis Applications - Case Studies

Fig. 4.5. Pareto plot - Crystallization example 2

1, it is clear that Otsu method based thresholding fails to differentiate between the

particle and the background while minimum error based thresholding doesnt capture

the particle contour as well as one would have hoped for. From Fig. 4.6(d), it can

be seen that MOO based thresholding performs better than the other two methods.

The performance is validated using the misclassification rates as indicated in the

last row of Table 4.1.

From the results shown in Table 4.1, it can be noticed that misclassification

rate of Otsu method is much higher compared to the minimum error method and

MOO based thresholding method. The misclassification rates confirm that minimum

error method performs better than Otsu method, while MOO based thresholding

outperforms both the methods. From Table 4.1, it can also be noted that, as

expected, the misclassification rate increases as the number of particles in the image

increases.
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Fig. 4.6. Crystallization example 2 (a) - Original image, (b), (c),
(d) Image after thresholding using Otsu method, Minimum error
method, and MOO based segmentation respectively

Table 4.1
Misclassification rate for crystallization images

Image Name Otsu Method Minimum Error Method MOO based segmentation

Example 1 48.38 1.73 0.4
Example 2 37.15 5.58 1.34

4.1.4 Feature extraction

The characteristic length of each segmented object has to be calculated. Hence,

the feature extraction step is used to extract features of the segmented objects. Blob
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Analysis is used for feature extraction (Instruments 2008). In the binary images,

the objects are denoted by 1 and the background is denoted by 0. The pixels which

have same values that are connected (touching particles) are referred to as blob.

Separate objects are referred to as different blobs in the image. Using blob analysis,

one can find numerous statistics such as the number of blobs, position of the blobs,

area of each blob, etc.

In blob analysis, the minimum area rectangle algorithm is used such that the

bounding box encloses the polygon (shown in Fig. 4.7). The features of this bound-

ing box are taken as the properties of the blob. The minimum area rectangle is found

using the rotating calipers method (Toussaint 1983) as described in algorithmic form

below.

The algorithm for minimum area rectangle is explained briefly.

1. Find four extreme points for the polygon.

2. Draw lines of support through each of these four points parallel to the x and

y axes so as to form a rectangle enclosing the polygon. These lines make a

certain angle with different edges of the polygon.

3. Rotate the lines in clockwise direction so that one of the lines coincides with

an edge of the polygon.

4. Compute the area of the new rectangle and compare it to the minimum area. If

the current area is smaller than the minimum, store this as the new minimum.

5. Repeat steps 3 - 4 until the total rotation of the lines is greater than 90 degrees.

6. From this method, the required minimum area rectangle enclosing the polygon

is obtained.

With the help of blob analysis, the CSD was estimated from the process images.

This method was tested on numerous images and is illustrated using the image used

as Example 2 above. The example image is given in Fig. 4.8(a). The image after
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Fig. 4.7. Minimum area enclosing rectangle

segmenting using the MOO approach undergoes morphological processing and is

given in Fig. 4.8(b). The final image where the individual particles are identified is

given in Fig. 4.8(c).

The accuracy of the proposed method was found by comparing the estimated

CSD with the true (known) particle characteristics (true CSD) used to generate the

artificial images. The estimation accuracy in an image is calculated by computing

the sum of absolute error between the actual length and the characteristic length of

each particle estimated by the algorithm. The estimation accuracy was tested on

different sets of images by varying the number of particles in the process images.

The algorithm was tested for 3 different sets of 100 images representing different size

ranges. The results are compiled in Table 4.2. The last three columns presented in

Table 4.2 gives the mean, maximum and minimum estimation accuracy with respect

to the number of particles that exist in each image (given in first column). As the

number of particles increased, it was noted that there is an increase in the percentage

of overlapping particles in the image. Hence, the percentage overlap was calculated

for each set of images as the ratio of number of particles that are overlapped in

the image to the actual number of particles and the average percentage overlap is
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Fig. 4.8. (a) Original image, (b) Segmented image, and (c) Final image

presented in the second column in Table 4.2. The mean accuracy of the proposed

MOO-based algorithm was found to be higher than 95% when 5-15 particles exist

in an image. The mean accuracy dropped down to around 92.7% when the number

of particles in the image increased to 20-25 particles. Hence, it can be seen that the

particle size characteristics are captured very well by this method in each image. In

this work, the overlapped particles have been not been taken into consideration for

calculating the estimation accuracy.

In PVM, a set of images are captured by the camera at successive time points till

we have enough information to estimate the CSD which is very crucial for effective
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Table 4.2
Estimation accuracy for different sets of crystallization images

No. of particles Percentage overlap
Estimation accuracy

Average Maximum Minimum

5-15 22.86 95.51 99.16 86.28
15-20 37.24 93.33 98.68 85.31
20-25 43.48 92.72 98.18 83.18

control of the crystallization process. To see the effect of the number of processed

images on the CSD estimation accuracy, a library of 500 particles was constructed

and assumed to exist inside the crystallizer. From this library, a set of 50 images

in which 0 to 20 particles exist were generated stochastically imitating the images

captured by a camera during a crystallization process. By applying the algorithm

developed in this work on these images, a crystal size distribution was constructed.

This crystal size distribution was compared with the distribution of the actual library

used to generate the images. This is shown in Fig. 4.9 from where it can be seen

that the estimated frequency distribution (estimated CSD) is very similar to the

true CSD represented by the library data. Similarly, this method was tested by

increasing the number of images captured to 100. Comparison of the estimated

CSD with the actual distribution for the 100 images (first set) is shown in Fig. 4.10.

The experiment was repeated by changing the number of images to 25 and 500, to

study the effect of number of images.

Each experimental run was repeated 25 times. The statistics of the distributions

are computed and the results are compiled in Table 4.3. The mean of the actual

library of particles is 100.52 (in pixel). The mean of distributions from the different

“experiments” are compared in the second column of the Table 4.3. As the number

of images is increased, the mean of the distribution approaches the “true” mean of

the library. The variance of the distributions also behave in the same way. From

Figures 4.9 and 4.10, it is noted that as we increase the number of images, the
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actual distribution which exists within the crystallizer is estimated more accurately

from the PVM images by the MOO based technique. It can also be seen there

is no significant improvement in the accuracy when one increases the number of

images from 100 to 500. From the fourth column of Table 4.3, it can be seen that

the skewness of the actual and estimated distributions are close to 0, indicating a

symmetric distribution. Similarly the kurtosis values are also close to each other

and around 3 which denotes a normal distribution. Hence, by capturing an optimal

number of images, the CSD can be estimated from the PVM images.

The effect of adding broken particles and small chips are compared by keeping

the number of images constant at 100. Each experimental run is repeated 10 times.

The results are shown in Table 4.4. By comparing the statistics in Table 4.4, it

is evident that our algorithm does not have trouble in estimating CSD from PVM

images with disturbances such as broken crystals and small particles. Therefore, this

methodology can be applied to images from the crystallization process for estimating

CSD in order to better control the crystallization process.

Table 4.3
Statistical mean measures obtained for the different “experimental” runs

Set Description Mean Variance Skewness Kurtosis

Actual 100.52 377.85 0.002 2.86
25 Images 101.79 382.16 -0.026 2.81
50 Images 100.84 382.56 -0.01 2.86
100 Images 100.68 372.53 -0.006 2.88
500 Images 100.56 375.72 -0.002 2.85
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Fig. 4.9. Estimated CSD compared with actual CSD (50 Images)

Fig. 4.10. Estimated CSD compared with actual CSD (100 Images)
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Table 4.4
Statistical mean measures obtained for the different “experimental”
runs of 100 images

Set Description Mean Variance Skewness Kurtosis

Normal 100.68 372.53 -0.006 2.88
Broken Crystals 100.84 380.24 0.01 2.85
Small Particles 100.42 381.4 -0.008 2.87

4.2 Case II - Classification of ultrasound breast cancer tu-

mor images based on image analysis

A general introduction to this problem has been given in Section 2.6. In this

section, the results obtained by the application of image analysis on the ultrasound

images are discussed.

4.2.1 Image acquisition

A set of 30 ultrasound images of 10 breast cancer patients were obtained from

International Islamic University Malaysia (IIUM) Breast Centre. Out of the 10

patients, 4 patients have cancer. The images used in this work were obtained in the

dicom format. An example image is shown in Fig. 4.11. The details of the patient

have been removed for confidentiality reasons.

4.2.2 Image pre-processing

Generally, ultrasound images are subjected to speckle reduction (noise removal)

and image enhancement. Similar to what was done for crystallization images, speckle

reduction was carried out with the help of median filtering. Image enhancement was

carried out using the histogram equalization method.
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Fig. 4.11. Ultrasound image of breast tumor

4.2.3 Image segmentation

In this section, image segmentation is carried out by the MOO based image

thresholding approach explained in Chapter 3. After segmentation, morphological

operations are applied on the binary image to remove trivial objects and segments

touching the border. The Pareto front is obtained and shown in Fig. 4.12. The

optimal threshold is computed from the Pareto using the L2-norm method. The

original image is shown in Fig. 4.13(a). The images obtained after thresholding using

the three considered methods (Otsu, minimum error and MOO based approach)

are shown in Fig. 4.13(b), (c) and (d) respectively. The results show that Otsu

method based thresholding identifies the tumor along with some dark regions and

fails to differentiate between the particle boundary and some dark regions of the

background, while minimum error based thresholding misses out major part of the

tumor. From Fig. 4.13(d), it can be seen that MOO based thresholding performs
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better than the other two methods. This segmentation accuracy in this image was

evaluated by manually segmenting the tumor and calculating the misclassification

rate. The misclassification rates of the tumors visible in the ultrasound image is

calculated and shown in Table 4.5. From Fig. 4.13 and Table 4.5, it is very clear

that MOO based approach segments the tumor better than the other two methods.

Fig. 4.12. Pareto plot - Breast image (ultrasound)

Table 4.5
Misclassification rate for breast ultrasound images

Example Otsu Method Minimum Error Method MOO based segmentation

Tumor 1 42.83 22.16 10.43
Tumor 2 52.68 23.78 15.19
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4.2 Case II - Classification of ultrasound breast cancer tumor images based on
image analysis

Fig. 4.13. (a) - Original image (b), (c), (d) Image after threshold-
ing using Otsu method, Minimum error method, and MOO based
segmentation respectively

4.2.4 Feature extraction

After segmenting the tumor from breast ultrasound image, the tumor segments

can be characterized using feature extraction technique. The features that can be

extracted from the tumor can be broadly classified into four major categories: tex-

ture, morphologic, model-based and descriptor features. In our algorithm, features
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such as mean and variance of the intensity of the tumor area, the tumor area, the

circumference of the tumor were estimated. The statistics obtained can be used to

calculate the compactness of the tumor, aspect ratio, homogeneity of the region, etc.

The features that were computed from the example image in this work are shown

in Table 4.6.

Table 4.6
Extracted features of breast cancer tumors

Example Area Circumference Compactness Extent Aspect Ratio

Tumor 1 43119 1269 0.3367 0.6708 1.6231
Tumor 2 37223.375 2004.5 0.116 0.7059 2.103

Based on features like those extracted in Table 4.6, breast cancer images can be

classified into benign and malignant with the help of a classification tool (Cheng et al.

2010). The set of rules followed to classify the tumor vary between physicians. Based

on the radiologist’s requirements, extra features which are essential for classification

can be also extracted. Hence, this algorithm can be useful in assisting radiologists

to extract the features required for classification.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

As illustrated in this thesis, MOO based approach works better than current

single objective based thresholding strategies. The MOO based approach gives

a user an extra option for better thresholding. Segmentation is very important

because the extracted region of interest will be further processed by other image

analysis steps and the overall results will be affected by the quality of the results

obtained at this step.

The estimation of CSD via image analysis is important for effective control of

crystallization processes. The accuracy of the image analysis results largely depends

on the image analysis methodologies chosen for the various image processing steps.

Image segmentation is a key step in the overall image analysis procedure. Image

thresholding by traditional methods fails if the image is noisy even after image pre-

processing. However, the limitations of the traditional methods can be overcome

using MOO based thresholding approach as is shown in this work. Using feature

extraction techniques such as blob analysis, and minimum area enclosing rectangle,

the CSD can be estimated. The results from this investigation show that the pro-

posed algorithm has high estimation accuracy owing to its MOO based thresholding

approach. This technique, therefore, offers an opportunity for automated control of

crystallization processes leading to improved product quality. Image analysis tech-

niques can also be extended in the case of other particulate process involved in the

pharmaceutical, chemical and food industry.
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Chapter 5 Conclusions

Early detection of breast cancer can help in treating the disease much more

effectively. Detection techniques must be accurate to prevent unwanted biopsies.

Ultrasound imaging of breast tumors are preferred over mammography techniques

due to lower rate of false positives. The classification of tumors varies largely due

to high inter observer inconsistencies. In this work, image analysis technique based

MOO approach was shown to allow segmentation of the tumor and determine its

properties such as size, shape, etc. Hence, this algorithm can act as a tool in assisting

radiologist for classification of benign masses from malignant.

5.2 Future work

On the average, it was found that the proposed MOO based method has an esti-

mation accuracy greater than 92% when 20-25 particles exist in the image. However,

this method does not estimate the size of overlapping particles. Therefore, if the

size of the overlapped particles can be characterized, the number of images required

to obtain the CSD can be reduced to bring down operation costs.

Therefore, the overlaps have to be handled during the processing of individual

images. Overlapping particles need to be identified first. This can be done by using

minimum area rectangle method. Firstly, the minimum area enclosing rectangle

is calculated for the overlapping particle and compared with the actual area of

the particle occupying the image obtained from blob analysis. Based on a small

error criterion between the two areas, the blobs can be classified into overlaps and

individual particles. After this step, there are two possible plans for identifying them

as separate particles. The first approach is to classify each pixel in this overlapped

region by assigning the pixel a label based on a set of rules. The second approach is

to use model based segmentation, where models of particles can be fitted to separate

touching and overlapping particles.

Different sets of features can be extracted from the breast tumor images. The

current algorithm can be extended as a complete automated diagnosis and detection
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5.2 Future work

tool by adding a suitable classification criterion made in consultation with a medical

expert. Once a set of rules are decided, there are many classification tools for

differentiating breast tumors.
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