39 research outputs found

    A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Get PDF
    The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR). By applying codes like CFD (computational fluid dynamics) and SP3 (simplified transport) reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3) based neutron kinetics (NK) code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted

    Mapping and assessment of ecosystems and their services. Urban ecosystems

    Get PDF
    Action 5 of the EU Biodiversity Strategy to 2020 requires member states to Map and Assess the state of Ecosystems and their Services (MAES). This report provides guidance for mapping and assessment of urban ecosystems. The MAES urban pilot is a collaboration between the European Commission, the European Environment Agency, volunteering Member States and cities, and stakeholders. Its ultimate goal is to deliver a knowledge base for policy and management of urban ecosystems by analysing urban green infrastructure, condition of urban ecosystems and ecosystem services. This report presents guidance for mapping urban ecosystems and includes an indicator framework to assess the condition of urban ecosystems and urban ecosystem services. The scientific framework of mapping and assessment is designed to support in particular urban planning policy and policy on green infrastructure at urban, metropolitan and regional scales. The results are based on the following different sources of information: a literature survey of 54 scientific articles, an online-survey (on urban ecosystems, related policies and planning instruments and with participation of 42 cities), ten case studies (Portugal: Cascais, Oeiras, Lisbon; Italy: Padua, Trento, Rome; The Netherlands: Utrecht; Poland: PoznaƄ; Spain: Barcelona; Norway: Oslo), and a two-day expert workshop. The case studies constituted the core of the MAES urban pilot. They provided real examples and applications of how mapping and assessment can be organized to support policy; on top, they provided the necessary expertise to select a set of final indicators for condition and ecosystem services. Urban ecosystems or cities are defined here as socio-ecological systems which are composed of green infrastructure and built infrastructure. Urban green infrastructure (GI) is understood in this report as the multi-functional network of urban green spaces situated within the boundary of the urban ecosystem. Urban green spaces are the structural components of urban GI. This study has shown that there is a large scope for urban ecosystem assessments. Firstly, urban policies increasingly use urban green infrastructure and nature-based solutions in their planning process. Secondly, an increasing amount of data at multiple spatial scales is becoming available to support these policies, to provide a baseline, and to compare or benchmark cities with respect to the extent and management of the urban ecosystem. Concrete examples are given on how to delineate urban ecosystems, how to choose an appropriate spatial scale, and how to map urban ecosystems based on a combination of national or European datasets (including Urban Atlas) and locally collected information (e.g., location of trees). Also examples of typologies for urban green spaces are presented. This report presents an indicator framework which is composed of indicators to assess for urban ecosystem condition and for urban ecosystem services. These are the result of a rigorous selection process and ensure consistent mapping and assessment across Europe. The MAES urban pilot will continue with work on the interface between research and policy. The framework presented in this report needs to be tested and validated across Europe, e.g. on its applicability at city scale, on how far the methodology for measuring ecosystem condition and ecosystem service delivery in urban areas can be used to assess urban green infrastructure and nature-based solutions

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses

    Full text link
    We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K v 1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca 2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K + and Ca 2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K + channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca 2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca 2+ signaling. Electric fields enhanced Ca 2+ spike amplitude and triggered formation of a second traveling Ca 2+ wave. Mibefradil blocked Ca 2+ spikes and waves. Although 10 ΌM SKF96365 mimicked mibefradil, 7 ΌM SKF96365 specifically inhibited electric field-induced Ca 2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-ÎČ-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46726/1/249_2005_Article_1.pd

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Validation of CATHARE-3 system code for sodium two-phase flow application r&d path and simulation of key-tests from SIENA program

    No full text
    International audienceSodium Fast Reactors (SFRs) are being considered by several leading nuclearized countries as the most promising technology for next generation of nuclear reactors (Gen IV). In that frame, RetD programs are being conducted to enhance their safety. It is the role of system codes, such as CATHARE-3, to provide a fair balance of the actual safety gain for some severe scenarios that are postulated, such as an Unprotected Loss Of Flow (ULOF).While monophasic simulations with the CATHARE-3 system code are seen today to be reliable, sodium two-phase flow models are still under development and validation process. This paper reports the recent progress made in those fields.First, some key two-phase flow closure laws that are currently considered by CATHARE-3 are summarized. They include some new fluid mechanics correlations that were established thanks to the SENSAS air/water program which was featuring a full-scale subassembly (S/A) mock-up which geometry was consistent with the low void reactor concepts (S/A upper sodium plenum). The developed correlations proved to be efficient in simulating some sodium boiling key-experiments from the French GR-19 and Japanese SIENA-37 80's programs. It is also reported some likely limits of the code current models, especially concerning prediction of dry-out occurrence. In order to support the validation of these closure laws, new experimental programs are required. Their targeted features are briefly described in this document

    Some numerical achievements on Na boiling dynamics and next technical route

    No full text
    International audienceThe paper proposes an overview of an R&D program for Gen4 Sodium Fast Reactors that was launched in 2012 at CEA to investigate Na boiling dynamics under an Unprotected Loss of Flow scenario. Part of the program motivation was an incident periodic two-phase flow pattern (limit cycle) along the transient that was calculated at first. If proven, such a stable phenomenology could indeed attractively improve reactor safety by providing a time-window for recovering pumping power. The paper is restricted to the thermal-hydraulic side of the R&D initiative that targeted to credit prediction of the boiling flow dynamics. First, the 1-D numerical achievements obtained by simulating with CATHARE3 thermal hydraulic system code, some out-of-pile programs from the 70-80 s, are detailed. The latter were indeed already very informative on two-phase flow stability scenarios, by so offering a first sound qualification basis. Related benefits allowed by a recent air-water experimental program that supported some modifications of wall and interfacial closure laws, are pointed out. The second part of the paper outlooks the next technical route and its early advances. Part of it, is 3-D simulation by subchannel code TrioMC which first application shows its added-value to perform a detailed analysis of a scaled experiment. Predictive capabilities of 3-D approach will be also central to credit a full-scale transposition. Progress on flow stability analysis, including subcooled condensation as well as connected channel reflooding and pressure wave aspects, could be as such expected from recent developments on CFD. Indeed, advances for an all flow regimes representation opportunely suit Na boiling physics. Bifurcation and stability analysis with the developed BAC-CARAT model is finally identified as providing a tailored mathematical approach to connect the periodic flow pattern with a Hopf bifurcation. Its ability to provide a mechanistic view of the scenarios shift on a natural convection test-case, is reported. On the experimental side, the scope of a new program planed with IPPE on a wire-spaced 19 pins bundle, is briefly introduced. HARIBO program suits some Gen4 hydraulic design specifics and targets CATHARE3 and TrioMC qualification
    corecore