12,770 research outputs found

    Analysis of the acoustic cut-off frequency and HIPs in six Kepler stars with stochastically excited pulsations

    Get PDF
    Gravito-acoustic modes in the Sun and other stars propagate in resonant cavities with a frequency below a given limit known as the cut-off frequency. At higher frequencies, waves are no longer trapped in the stellar interior and become traveller waves. In this article we study six pulsating solar-like stars at different evolutionary stages observed by the NASA Kepler mission. These high signal-to-noise targets show a peak structure that extends at very high frequencies and are good candidates for studying the transition region between the modes and the interference peaks or pseudo-modes. Following the same methodology successfully applied on Sun-as-a-star measurements, we uncover the existence of pseudo-modes in these stars with one or two dominant interference patterns depending on the evolutionary stage of the star. We also infer their cut-off frequency as the midpoint between the last eigenmode and the first peak of the interference patterns. By using ray theory we show that, while the period of one of the interference pattern is very close to half the large separation the other, one depends on the time phase of mixed waves, thus carrying additional information on the stellar structure and evolution.Comment: Accepted for publication in A&A. 14 pages, 28 figure

    Improving a Satellite Mission System by means of a Semantic Grid Architecture

    Get PDF
    The use of a semantic grid architecture can make easier the deployment of complex applications, in which several organizations are involved and diverse resources are shared. This paper presents the application of the architecture defined in the Ontogrid project (S-OGSA) into a scenario for the analysis of the quality of the products of satellite missions

    Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors.

    Get PDF
    The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors

    Self-Development of Competences for Social Inclusion Using the TENCompetence Infrastructure

    Get PDF
    This paper describes a pilot study centred on the technology-enhanced self-development of competences in lifelong learning education carried out in the challenging context of the Association of Participants Àgora. The pilot study shows that the use of the TENCompetence infrastructure, i.e. in this case the Personal Development Planner tool, provides various kinds of benefits for adult participants with low educational profiles and who are traditionally excluded from the use of innovative learning technologies and the knowledge society. The selforganized training supported by the PDP tool aims at allowing the learners to create and control their own learning plans based on their interests and educational background including informal and non-formal experiences. In this sense, the pilot participants had the opportunity to develop and improve their competences in English language (basic and advanced levels) and ICT competence profiles which are mostly related to functional and communicative skills. Besides, the use of the PDP functionalities, such as the self-assessment, the planning and the self-regulating elements allowed the participants to develop reflective skills. Pilot results also provide indications for future developments in the field of technology support for self-organized learners. The paper introduces the context and the pilot scenario, indicates the evaluation methodology applied and discusses the most significant findings derived from the pilot study

    \u3cem\u3eHymenachne Amplexicaluis\u3c/em\u3e [(Rudge) Nees] Genetic Resources Collection in MĂ©xico, a Suitable Grass for Flood Plains in Tropical Areas

    Get PDF
    Hymenachne amplexicaluis [( Rudge ) Nees; 2n= 2x= 24; Azuche, West Indian marsh grass] is a native Central and South America C3 grass that grows well under intermittent flooding conditions. It produces good seed set and stolons to thrive on new areas assuring its survival, combined with an efficient N metabolism to promote vigorous new growing leaves and tillers (Antel et al., 1998). Azuche is a dual attribute species when introduced to new areas; it has valuable forage attributes but also is a potential weed (Hill, 2000). As Azuche is a native species, one must deal with in the best possible way within Tropical Latin America areas (EnrĂ­quez et al., 2004). No report has been found to date on living genetic resources collection and evaluation for this species

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    Get PDF
    International audienceThe global warming of Earth's near-surface, air and oceans in recent decades is a direct consequence of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions contribute approximately 60% to this climate change. This study investigates experimentally the aqueous carbonation mechanisms of an alkaline paper mill waste containing about 55 wt% portlandite (Ca(OH)2) as a possible mineralogical CO2 sequestration process. The overall carbonation reaction includes the following steps: (1) Ca release from portlandite dissolution, (2) CO2 dissolution in water and (3) CaCO3 precipitation. This CO2 sequestration mechanism was supported by geochemical modelling of final solutions using PHREEQC software, and observations by scanning electron microscope and X-ray diffraction of final reaction products. According to the experimental protocol, the system proposed would favour the total capture of approx. 218 kg of CO2 into stable calcite/ton of paper waste, independently of initial CO2 pressure. The final product from the carbonation process is a calcite (ca. 100 wt%)-water dispersion. Indeed, the total captured CO2 mineralized as calcite could be stored in degraded soils or even used for diverse industrial applications. This result demonstrates the possibility of using the alkaline liquid–solid waste for CO2 mitigation and reduction of greenhouse effect gases into the atmosphere

    Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash

    Get PDF
    International audienceThe increasing CO2 concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ mineral sequestration (controlled industrial reactors) of CO2. In the present study, we propose to use coal combustion fly-ash, an industrial waste that contains about 4.1 wt.% of lime (CaO), to sequester carbon dioxide by aqueous carbonation. The carbonation reaction was carried out in two successive chemical reactions, first, the irreversible hydration of lime. CaO + H2O → Ca(OH)2 second, the spontaneous carbonation of calcium hydroxide suspension. Ca(OH)2 + CO2 → CaCO3 + H2O A significant CaO–CaCO3 chemical transformation (approximately 82% of carbonation efficiency) was estimated by pressure-mass balance after 2 h of reaction at 30 °C. In addition, the qualitative comparison of X-ray diffraction spectra for reactants and products revealed a complete CaO–CaCO3 conversion. The carbonation efficiency of CaO was independent on the initial pressure of CO2 (10, 20, 30 and 40 bar) and it was not significantly affected by reaction temperature (room temperature “20–25”, 30 and 60 °C) and by fly-ash dose (50, 100, 150 g). The kinetic data demonstrated that the initial rate of CO2 transfer was enhanced by carbonation process for our experiments. The precipitate calcium carbonate was characterized by isolated micrometric particles and micrometric agglomerates of calcite (SEM observations). Finally, the geochemical modelling using PHREEQC software indicated that the final solutions (i.e. after reaction) are supersaturated with respect to calcium carbonate (0.7 ≤ saturation index ≤ 1.1). This experimental study demonstrates that 1 ton of fly-ash could sequester up to 26 kg of CO2, i.e. 38.18 ton of fly-ash per ton of CO2 sequestered. This confirms the possibility to use this alkaline residue for CO2 mitigation
    • …
    corecore