6,824 research outputs found

    A Study of the Near-Ultraviolet Spectrum of Vega

    Full text link
    UV, optical, and near-IR spectra of Vega have been combined to test our understanding of stellar atmospheric opacities, and to examine the possibility of constraining chemical abundances from low-resolution UV fluxes. We have carried out a detailed analysis assuming Local Thermodynamic Equilibrium (LTE) to identify the most important contributors to the UV continuous opacity: H, H−^{-}, C I, and Si II. Our analysis also assumes that Vega is spherically symmetric and its atmosphere is well described with the plane parallel approximation. Comparing observations and computed fluxes we have been able to discriminate between two different flux scales that have been proposed, the IUE-INES and the HST scales, favoring the latter. The effective temperature and angular diameter derived from the analysis of observed optical and near-UV spectra are in very good agreement with previous determinations based on different techniques. The silicon abundance is poorly constrained by the UV observations of the continuum and strong lines, but the situation is more favorable for carbon and the abundances inferred from the UV continuum and optical absorption lines are in good agreement. Some spectral intervals in the UV spectrum of Vega that the calculations do not reproduce well are likely affected by deviations from LTE, but we conclude that our understanding of UV atmospheric opacities is fairly complete for early A-type stars.Comment: 13 pages, 9 figures, to be published in Ap

    Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands greening in the Pyrenees

    Get PDF
    In mountain areas, the phenology and productivity of grassland are closely related to snow dynamics. However, the influence that snow melt timing has on grassland growing still needs further attention for a full understanding, particularly at high spatial resolution. Aiming to reduce this knowledge gap, this work exploits 1 m resolution snow depth and Normalized Difference Vegetation Index observations acquired with an Unmanned Aerial Vehicle at a sub-alpine site in the Pyrenees. During two snow seasons (2019–2020 and 2020–2021), 14 NDVI and 17 snow depth distributions were acquired over 48 ha. Despite the snow dynamics being different in the two seasons, the response of grasslands greening to snow melt-out exhibited a very similar pattern in both. The NDVI temporal evolution in areas with distinct melt-out dates reveals that sectors where the melt-out date occurs in late April or early May (optimum melt-out) reach the maximum vegetation productivity. Zones with an earlier or a later melt-out rarely reach peak NDVI values. The results obtained in this study area, suggest that knowledge about snow depth distribution is not needed to understand NDVI grassland dynamics. The analysis did not reveal a clear link between the spatial variability in snow duration and the diversity and richness of grassland communities within the study area

    Extreme Starbursts in the Local Universe

    Full text link
    The "Extreme starbursts in the local universe" workshop was held at the Insituto de Astrofisica de Andalucia in Granada, Spain on 21-25 June 2010. Bearing in mind the advent of a new generation of facilities such as JWST, Herschel, ALMA, eVLA and eMerlin, the aim of the workshop was to bring together observers and theorists to review the latest results. The purpose of the workshop was to address the following issues: what are the main modes of triggering extreme starbursts in the local Universe? How efficiently are stars formed in extreme starbursts? What are the star formation histories of local starburst galaxies? How well do the theoretical simulations model the observations? What can we learn about starbursts in the distant Universe through studies of their local counterparts? How important is the role of extreme starbursts in the hierarchical assembly of galaxies? How are extreme starbursts related to the triggering of AGN in the nuclei of galaxies? Overall, 41 talks and 4 posters with their corresponding 10 minutes short talks were presented during the workshop. In addition, the workshop was designed with emphasis on discussions, and therefore, there were 6 discussion sessions of up to one hour during the workshop. Here is presented a summary of the purposes of the workshop as well as a compilation of the abstracts corresponding to each of the presentations. The summary and conclusions of the workshop along with a description of the future prospects by Sylvain Veilleux can be found in the last section of this document. A photo of the assistants is included.Comment: worksho

    The noble gas signature of the 2021 Tajogaite eruption (La Palma, Canary Islands)

    Get PDF
    Here, we characterize the temporal evolution of volatiles during the Tajogaite eruption by analyzing the elemental (He-Ar-CO2-N2) and isotopic (He-Ar-Ne) composition of fluid inclusions (FI) in phenocrysts (olivine+pyroxene) identified in erupted lavas. Our 2021 lava samples identify substantial temporal variations in volatile composition. We show that, during the 2021 Tajogaite eruption, the He-CO2-N2 concentrations in FI increased since October 15th; this increase was accompanied by increasing 40Ar/36Ar ratios (from ~300 to >500), and paralleled a major shift in bulk lava chemistry, with increasing Mg contents (Mg#, from 47 to 52 to 55–59), CaO/Al2O3 (from 0.65 to 0.74 to 0.75–0.90), Ni and Cr, and decreasing TiO2, P2O5 and incompatible elements. The olivine core composition also became more forsteritic (from Mg# = 80–81 to Mg# = 84–86). Mineral thermobarometry and FI barometry results indicate that the eruption was sustained by magmas previously stored in at least two magma accumulation zones, at respectively ~6–12 km and 15–30 km, corroborating previous seismic and FI evidence. We therefore propose that the compositional changes seen throughout the eruption can be explained by an increased contribution - since early/mid-October - of more primitive, lessdegassed magma from the deeper (mantle) reservoir. Conversely, Rc/Ra values (3He/4He ratios corrected for atmospheric contamination) remained constant throughout the whole eruption at MORB-like values (7.38 ± 0.22 Ra, 1σ), suggesting an isotopically homogeneous magma feeding source. The Tajogaite He isotope signature is within the range of values observed for the 1677 San Antonio lavas (7.37 ± 0.17Ra, 1σ), but is more radiogenic than the 3He/4He values (>9 Rc/Ra) observed in the Caldera de Taburiente to the north. The 3He/4He ratios (6.75 ± 0.20 Ra, 1σ) measured in mantle xenoliths from the San Antonio volcano indicate a relatively radiogenic nature of the mantle beneath the Cumbre Vieja ridge. Based on these results and mixing modeling calculations, we propose that the homogeneous He isotopic signatures observed in volatiles from the Tajogaite/San Antonio lavas reflect three component mixing between a MORB-like source, a radiogenic component and small additions (6–15%) of a high 3He/4He reservoir-derived (>9Ra) fluid components. The simultaneous occurrence of high 3 He/4 He (>9Ra)- and MORB-like He signatures in northern and southern La Palma is interpreted to reflect smallscale heterogeneities in the local mantle, arising from spatially variable proportions of MORB, radiogenic, and high 3He/4He component

    CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation

    Get PDF
    We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction.We summarize the survey goals and design, including sample selection and observational strategy.We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of ∌600\sim600 galaxies in the Local Universe (0.005< z <0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK Integral Field Unit (IFU), with a hexagonal field-of-view of \sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 {\AA}, using two overlapping setups (V500 and V1200), with different resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and Astrophysic

    Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release

    Full text link
    With the goal of investigating the degree to which theMIR luminosity in theWidefield Infrared Survey Explorer (WISE) traces the SFR, we analyze 3.4, 4.6, 12 and 22 {\mu}m data in a sample of {\guillemotright} 140,000 star-forming galaxies or star-forming regions covering a wide range in metallicity 7.66 < 12 + log(O/H) < 9.46, with redshift z < 0.4. These star-forming galaxies or star-forming regions are selected by matching the WISE Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8 provided by JHU/MPA 1.We study the relationship between the luminosity at 3.4, 4.6, 12 and 22 {\mu}m from WISE and H\alpha luminosity in SDSS DR8. From these comparisons, we derive reference SFR indicators for use in our analysis. Linear correlations between SFR and the 3.4, 4.6, 12 and 22 {\mu}m luminosity are found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are proposed. The calibrations hold for galaxies with verified spectral observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 {\mu}m luminosity and SFR relates to the galaxy's properties, such as 4000 {\deg}A break and galaxy color.Comment: 10 pages, 3 figure

    Spitzer view on the evolution of star-forming galaxies from z=0 to z~3

    Full text link
    We use a 24 micron selected sample containing more than 8,000 sources to study the evolution of star-forming galaxies in the redshift range from z=0 to z~3. We obtain photometric redshifts for most of the sources in our survey using a method based on empirically-built templates spanning from ultraviolet to mid-infrared wavelengths. The accuracy of these redshifts is better than 10% for 80% of the sample. The derived redshift distribution of the sources detected by our survey peaks at around z=0.6-1.0 (the location of the peak being affected by cosmic variance), and decays monotonically from z~1 to z~3. We have fitted infrared luminosity functions in several redshift bins in the range 0<z<~3. Our results constrain the density and/or luminosity evolution of infrared-bright star-forming galaxies. The typical infrared luminosity (L*) decreases by an order of magnitude from z~2 to the present. The cosmic star formation rate (SFR) density goes as (1+z)^{4.0\pm0.2} from z=0 to z=0.8. From z=0.8 to z~1.2, the SFR density continues rising with a smaller slope. At 1.2<z<3, the cosmic SFR density remains roughly constant. The SFR density is dominated at low redshift (z<0.5) by galaxies which are not very luminous in the infrared (L_TIR<1.e11 L_sun, where L_TIR is the total infrared luminosity, integrated from 8 to 1000 micron). The contribution from luminous and ultraluminous infrared galaxies (L_TIR>1.e11 L_sun) to the total SFR density increases steadily from z~0 up to z~2.5, forming at least half of the newly-born stars by z~1.5. Ultraluminous infrared galaxies (L_TIR>1.e12 L_sun) play a rapidly increasing role for z>~1.3.Comment: 28 pages, 17 figures, accepted for publication in Ap
    • 

    corecore