9,007 research outputs found
A first step to accelerating fingerprint matching based on deformable minutiae clustering
Fingerprint recognition is one of the most used biometric
methods for authentication. The identification of a query fingerprint requires
matching its minutiae against every minutiae of all the fingerprints
of the database. The state-of-the-art matching algorithms are costly, from
a computational point of view, and inefficient on large datasets. In this
work, we include faster methods to accelerating DMC (the most accurate
fingerprint matching algorithm based only on minutiae). In particular,
we translate into C++ the functions of the algorithm which represent the
most costly tasks of the code; we create a library with the new code and
we link the library to the original C# code using a CLR Class Library
project by means of a C++/CLI Wrapper. Our solution re-implements
critical functions, e.g., the bit population count including a fast C++
PopCount library and the use of the squared Euclidean distance for calculating
the minutiae neighborhood. The experimental results show a
significant reduction of the execution time in the optimized functions of
the matching algorithm. Finally, a novel approach to improve the matching
algorithm, considering cache memory blocking and parallel data processing,
is presented as future work.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
New Symmetries in Crystals and Handed Structures
For over a century, the structure of materials has been described by a
combination of rotations, rotation-inversions and translational symmetries. By
recognizing the reversal of static structural rotations between clockwise and
counterclockwise directions as a distinct symmetry operation, here we show that
there are many more structural symmetries than are currently recognized in
right- or left-handed handed helices, spirals, and in antidistorted structures
composed equally of rotations of both handedness. For example, though a helix
or spiral cannot possess conventional mirror or inversion symmetries, they can
possess them in combination with the rotation reversal symmetry. Similarly, we
show that many antidistorted perovskites possess twice the number of symmetry
elements as conventionally identified. These new symmetries predict new forms
for "roto" properties that relate to static rotations, such as rotoelectricity,
piezorotation, and rotomagnetism. They also enable symmetry-based search for
new phenomena, such as multiferroicity involving a coupling of spins, electric
polarization and static rotations. This work is relevant to structure-property
relationships in all material structures with static rotations such as
minerals, polymers, proteins, and engineered structures.Comment: 15 Pages, 4 figures, 3 Tables; Fig. 2b has error
Transmission of Foot-and-Mouth Disease SAT2 Viruses at the Wildlife-Livestock Interface of Two Major Transfrontier Conservation Areas in Southern Africa.
Over a decade ago, foot-and-mouth disease (FMD) re-emerged in Southern Africa specifically in beef exporting countries that had successfully maintained disease-free areas in the past. FMD virus (FMDV) serotype SAT2 has been responsible for a majority of these outbreaks. Epidemiological studies have revealed the importance of the African buffalo as the major wildlife FMD reservoir in the region. We used phylogeographic analysis to study dynamics of FMD transmission between buffalo and domestic cattle at the interface of the major wildlife protected areas in the region currently encompassing two largest Transfrontier conservation areas: Kavango-Zambezi (KAZA) and Great Limpopo (GL). Results of this study showed restricted local occurrence of each FMDV SAT2 topotypes I, II, and III, with occasional virus migration from KAZA to GL. Origins of outbreaks in livestock are frequently attributed to wild buffalo, but our results suggest that transmission from cattle to buffalo also occurs. We used coalescent Bayesian skyline analysis to study the genetic variation of the virus in cattle and buffalo, and discussed the association of these genetic changes in the virus and relevant epidemiological events that occurred in this area. Our results show that the genetic diversity of FMDV SAT2 has decreased in buffalo and cattle population during the last decade. This study contributes to understand the major dynamics of transmission and genetic variation of FMDV SAT2 in Southern Africa, which will could ultimately help in designing efficient strategies for the control of FMD at a local and regional level
Pathology of paediatric bone tumours
Primary bone tumours account for less than 0.2% of all neoplasms but malignant bone tumours represent the third most common cause of cancer deaths in children and adolescents. The rarity of bone tumours in itself is a diagnostic challenge but is compounded by the number of tumour subtypes on top of which the imaging and histological features of degenerative and reactive processes, and benign bone tumours can simulate bone sarcomas. Furthermore, even in children bone lesions may represent metastatic disease. Hence the assessment of a bone tumour in a child or adolescent should be performed in a specialist referral bone tumour centre which has access to a multidisciplinary team and molecular diagnostic tests: the latter provides greater diagnostic accuracy. It is now appreciated that germline alterations occur more commonly than previously recognised in children and young adults presenting with osteosarcoma and Ewing sarcoma. Awareness of this is important as genetic counselling and screening may be appropriate. In this article epidemiology, radiology, pathology, genetics, treatment and prognosis of most commonly encountered bone tumours among the paediatric population are reviewed
A dandelion-encoded evolutionary algorithm for the delay-constrained capacitated minimum spanning tree problem
This paper proposes an evolutionary algorithm with Dandelion-encoding to tackle the Delay-Constrained Capacitated Minimum Spanning Tree (DC-CMST) problem. This problem has been recently proposed, and consists of finding several broadcast trees from a source node, jointly considering traffic and delay constraints in trees. A version of the problem in which the source node is also included in the optimization process is considered as well in the paper. The Dandelion code used in the proposed evolutionary algorithm has been recently proposed as an effective way of encoding trees in evolutionary algorithms. Good properties of locality has been reported on this encoding, which makes it very effective to solve problems in which the solutions can be expressed in form of trees. In the paper we describe the main characteristics of the algorithm, the implementation of the Dandelion-encoding to tackled the DC-CMST problem and a modification needed to include the source node in the optimization. In the experimental section of this article we compare the results obtained by our evolutionary with that of a recently proposed heuristic for the DC-CMST. the Least Cost (LC) algorithm. We show that our Dandelion-encoded evolutionary algorithm is able to obtain better results that the LC in all the instances tackled. (C) 2008 Elsevier B.V. All rights reserved
Evolution of transanal total mesorectal excision for rectal cancer: From top to bottom
The gold standard for curative treatment of locally advanced rectal cancer involves radical resection with a total mesorectal excision (TME). TME is the most effective treatment strategy to reduce local recurrence and improve survival outcomes regardless of the surgical platform used. However, there are associated morbidities, functional consequences, and quality of life (QoL) issues associated with TME; these risks must be considered during the modern-day multidisciplinary treatment for rectal cancer. This has led to the development of new surgical techniques to improve patient, oncologic, and QoL outcomes. In this work, we review the evolution of TME to the transanal total mesorectal excision (TaTME) through more traditional minimally invasive platforms. The review the development, safety and feasibility, proposed benefits and risks of the procedure, implementation and education models, and future direction for research and implementation of the TaTME in colorectal surgery. While satisfactory short-term results have been reported, the procedure is in its infancy, and long term outcomes and definitive results from controlled trials are pending. As evidence for safety and feasibility accumulates, structured training programs to standardize teaching, training, and safe expansion will aid the safe spread of the TaTME
The role of cardiac troponin T quantity and function in cardiac development and dilated cardiomyopathy
Background: Hypertrophic (HCM) and dilated (DCM) cardiomyopathies results from sarcomeric protein mutations, including cardiac troponin T (cTnT, TNNT2). We determined whether TNNT2 mutations cause cardiomyopathies by altering cTnT function or quantity; whether the severity of DCM is related to the ratio of mutant to wildtype cTnT; whether Ca2+ desensitization occurs in DCM; and whether absence of cTnT impairs early embryonic cardiogenesis. Methods and Findings: We ablated Tnnt2 to produce heterozygous Tnnt2+/ mice, and crossbreeding produced homozygous null Tnnt2-/-embryos. We also generated transgenic mice overexpressing wildtype (TGWT) or DCM mutant (TGK210Δ) Tnnt2. Crossbreeding produced mice lacking one allele of Tnnt2, but carrying wildtype (Tnnt2+/-/TGWT) or mutant (Tnnt2+/-/TGK210Δ) transgenes. Tnnt2+/-mice relative to wildtype had significantly reduced transcript (0.82 ± 0.06 [SD] vs. 1.00 ± 0.12 arbitrary units; p = 0.025), but not protein (1.01 ± 0.20 vs. 1.00 ± 0.13 arbitrary units; p = 0.44). Tnnt2+/-mice had normal hearts (histology, mass, left ventricular end diastolic diameter [LVEDD], fractional shortening [FS]). Moreover, whereas Tnnt2+/-/ TGK210Δ mice had severe DCM, TGK210Δ mice had only mild DCM (FS 18 ± 4 vs. 29 ± 7%; p < 0.01). The difference in severity of DCM may be attributable to a greater ratio of mutant to wildtype Tnnt2 transcript in Tnnt2+/-/TGK210Δ relative to TGK210Δ mice (2.42±0.08, p = 0.03). Tnnt2+/-/TGK210Δ muscle showed Ca2+ desensitization (pCa50 = 5.34 ± 0.08 vs. 5.58 ± 0.03 at sarcomere length 1.9 μm. p<0.01), but no difference in maximum force generation. Day 9.5 Tnnt2-/-embryos had normally looped hearts, but thin ventricular walls, large pericardial effusions, noncontractile hearts, and severely disorganized sarcomeres. Conclusions: Absence of one Tnnt2 allele leads to a mild deficit in transcript but not protein, leading to a normal cardiac phenotype. DCM results from abnormal function of a mutant protein, which is associated with myocyte Ca2+ desensitization. The severity of DCM depends on the ratio of mutant to wildtype Tnnt2 transcript. cTnT is essential for sarcomere formation, but normal embryonic heart looping occurs without contractile activity. © 2008 Ahmad et al
Physical Interactions With Bacteria and Protozoan Parasites Establish the Scavenger Receptor SSC4D as a Broad-Spectrum Pattern Recognition Receptor
Since the pioneering discoveries, by the Nobel laureates Jules Hoffmann and Bruce Beutler, that Toll and Toll-like receptors can sense pathogenic microorganisms and initiate, in vertebrates and invertebrates, innate immune responses against microbial infections, many other families of pattern recognition receptors (PRRs) have been described. One of such receptor clusters is composed by, if not all, at least several members of the scavenger receptor cysteine-rich (SRCR) superfamily. Many SRCR proteins are plasma membrane receptors of immune cells; however, a small subset consists of secreted receptors that are therefore in circulation. We here describe the first characterization of biological and functional roles of the circulating human protein SSC4D, one of the least scrutinized members of the family. Within leukocyte populations, SSC4D was found to be expressed by monocytes/macrophages, neutrophils, and B cells, but its production was particularly evident in epithelial cells of several organs and tissues, namely, in the kidney, thyroid, lung, placenta, intestinal tract, and liver. Similar to other SRCR proteins, SSC4D shows the capacity of physically binding to different species of bacteria, and this opsonization can increase the phagocytic capacity of monocytes. Importantly, we have uncovered the capacity of SSC4D of binding to several protozoan parasites, a singular feature seldom described for PRRs in general and here demonstrated for the first time for an SRCR family member. Overall, our study is pioneer in assigning a PRR role to SSC4D.This work was funded by National Funds through FCT– Fundação para a Ciência e a Tecnologia, I.P., under the projects SRecognite Infect-ERA/0003/2015 and UIDB/04293/ 2020. Individual funding to JT was provided by FCT through CEECIND/02362/2017. MC, RS, and MS were recipients of studentships from FCT, respectively, SFRH/BD/116791/2016, SFRH/BD/110691/2015, and SFRH/BD/133485/2017.
This paper is dedicated to our colleague and friend Rui Appelberg (1960-2020). The authors acknowledge the support of the i3S Scientific Platform BioSciences Screening, member of the national infrastructure PPBI–Portuguese Platform of Bioimaging (PPBI-POCI-01-0145-FEDER-022122) and PT-OPENSCREEN. Tissue sections were kindly provided by Amaro Frutuoso, Department of Complementary Means of Diagnosis and Therapy, Service of Pathology, Hospital Pedro Hispano, Matosinhos
Intergenerational change and familial aggregation of body mass index
The relationship between parental BMI and that of their adult offspring, when increased adiposity can become a clinical issue, is unknown. We investigated the intergenerational change in body mass index (BMI) distribution, and examined the sex-specific relationship
between parental and adult offspring BMI. Intergenerational
change in the distribution of adjusted BMI in 1,443
complete families (both parents and at least one offspring)
with 2,286 offspring (1,263 daughters and 1,023 sons) from
the west of Scotland, UK, was investigated using quantile
regression. Familial correlations were estimated from
linear mixed effects regression models. The distribution
of BMI showed little intergenerational change in the normal
range (\25 kg/m2), decreasing overweightness (25–
\30 kg/m2) and increasing obesity (C30 kg/m2). Median
BMI was static across generations in males and decreased
in females by 0.4 (95% CI: 0.0, 0.7) kg/m2; the 95th percentileincreased by 2.2 (1.1, 3.2) kg/m2 in males and 2.7
(1.4, 3.9) kg/m2 in females. Mothers’ BMI was more
strongly associated with daughters’ BMI than was fathers’
(correlation coefficient (95% CI): mothers 0.31 (0.27,
0.36), fathers 0.19 (0.14, 0.25); P = 0.001). Mothers’ and
fathers’ BMI were equally correlated with sons’ BMI
(correlation coefficient: mothers 0.28 (0.22, 0.33), fathers
0.27 (0.22, 0.33). The increase in BMI between generations
was concentrated at the upper end of the distribution. This,
alongside the strong parent-offspring correlation, suggests that the increase in BMI is disproportionally greater among
offspring of heavier parents. Familial influences on BMI among middle-aged women appear significantly stronger from mothers than father
Challenges of poor surface water drainage and wastewater management in refugee camps
Since refugee camps are meant to be temporary and setting them up usually require urgency, little attention has been given to provision of surface water drainage and to a lesser extent wastewater management. As the population of refugees in these camps continues to grow, the effectiveness of drainage infrastructure continues to diminish. In addition, availability of sufficient safe drinking water and wastewater management have become difficult in the refugee camps across the world. The present situation in refugee camps across the world, such as flooding and outbreak of water-related diseases in South Sudan refugee camps, has made the need for sustainable approach to solving the problems to be very urgent. One sustainable way of solving the problems of flooding and outbreak of diseases in refugee camps is to provide effective drainage and wastewater infrastructure that ensures all the wastewater are properly collected, treated and reused for various purposes such as agriculture, drinking, laundry and other relevant uses. This paper therefore presents the current state of drainage and wastewater management in two refugee camps and propose low-cost technologies for stormwater management, wastewater collection, treatment and potential reuse, suitable for these refugee camps
- …