1,990 research outputs found

    ROCOV scheme for Fault Detection and Location in HVDC sytems

    Get PDF
    A reliable DC fault protection system is essential for the development of HVDC grids. Therefore, this paper deals with the voltage derivative ROCOV scheme to locate and detect DC faults. The algorithm is able to differentiate internal and external faults considerably fast. The proposed algorithm is analyzed in a HVDC grid with different fault case scenarios. Finally, the ROCOV protection thresholds are discussed.The authors thank the support from the Spanish Ministry of Economy, Industry and Competitiveness (project ENE2016-79145-R AEI/FEDER, UE) and GISEL research group IT1083-16), as well as from the University of the Basque Country UPV/EHU (research group funding PPG17/23)

    From Euclidean to Minkowski space with the Cauchy-Riemann equations

    Get PDF
    We present an elementary method to obtain Green's functions in non-perturbative quantum field theory in Minkowski space from calculated Green's functions in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes is many times unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore we suggest to use the Cauchy-Riemann equations, that perform the analytical continuation without assuming global information on the function in the entire complex plane, only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge Quantum Chromodynamics, that is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations to high-frequency noise, that makes difficult to achieve good accuracy. We also point out a few curiosities related to the Wick rotation.Comment: 12 pages in EPJ double-column format, 16 figures. This version: added paragraph, two reference

    The impact of deep-sea fisheries and implementation of the UNGA Resolutions 61/105 and 64/72. Report of an international scientific workshop

    Get PDF
    The scientific workshop to review fisheries management, held in Lisbon in May 2011, brought together 22 scientists and fisheries experts from around the world to consider the United Nations General Assembly (UNGA) resolutions on high seas bottom fisheries: what progress has been made and what the outstanding issues are. This report summarises the workshop conclusions, identifying examples of good practice and making recommendations in areas where it was agreed that the current management measures fall short of their target

    First-principles study of the ferroelastic phase transition in CaCl_2

    Full text link
    First-principles density-functional calculations within the local-density approximation and the pseudopotential approach are used to study and characterize the ferroelastic phase transition in calcium chloride (CaCl_2). In accord with experiment, the energy map of CaCl_2 has the typical features of a pseudoproper ferroelastic with an optical instability as ultimate origin of the phase transition. This unstable optic mode is close to a pure rigid unit mode of the framework of chlorine atoms and has a negative Gruneisen parameter. The ab-initio ground state agrees fairly well with the experimental low temperature structure extrapolated at 0K. The calculated energy map around the ground state is interpreted as an extrapolated Landau free-energy and is successfully used to explain some of the observed thermal properties. Higher-order anharmonic couplings between the strain and the unstable optic mode, proposed in previous literature as important terms to explain the soft-phonon temperature behavior, are shown to be irrelevant for this purpose. The LAPW method is shown to reproduce the plane-wave results in CaCl_2 within the precision of the calculations, and is used to analyze the relative stability of different phases in CaCl_2 and the chemically similar compound SrCl_2.Comment: 9 pages, 6 figures, uses RevTeX

    Dynamics of a classical gas including dissipative and mean field effects

    Full text link
    By means of a scaling ansatz, we investigate an approximated solution of the Boltzmann-Vlasov equation for a classical gas. Within this framework, we derive the frequencies and the damping of the collective oscillations of a harmonically trapped gas and we investigate its expansion after release of the trap. The method is well suited to studying the collisional effects taking place in the system and in particular to discussing the crossover between the hydrodynamic and the collisionless regimes. An explicit link between the relaxation times relevant for the damping of the collective oscillations and for the expansion is established.Comment: 4 pages, 1 figur

    Isolation and characterisation of bacteriophages with activity against invasive non-typhoidal Salmonella causing blood-stream infection in Malawi

    Get PDF
    In recent years, novel lineages of invasive non-typhoidal Salmonella (iNTS) serovars Typhimurium and Enteritidis have been identified in patients with bloodstream infection in sub-Saharan Africa. Here, we isolated and characterised 32 phages capable of infecting S. Typhimurium and S. Enteritidis, from water sources in Malawi and the UK. The phages were classified in three major phylogenetic clusters that were geographically distributed. In terms of host range, Cluster 1 phages were able to infect all bacterial hosts tested, whereas Clusters 2 and 3 had a more restricted profile. Cluster 3 contained two sub-clusters, and 3.b contained the most novel isolates. This study represents the first exploration of the potential for phages to target the lineages of Salmonella that are responsible for bloodstream infections in sub-Saharan Africa

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Mean field effects in a trapped classical gas

    Full text link
    In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment relies on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.
    corecore