168 research outputs found

    Electron effective mass in Sn-doped monoclinic single crystal β\beta-gallium oxide determined by mid-infrared optical Hall effect

    Get PDF
    The isotropic average conduction band minimum electron effective mass in Sn-doped monoclinic single crystal β\beta-Ga2_2O3_3 is experimentally determined by mid-infrared optical Hall effect to be (0.284±0.013)m0(0.284\pm0.013)m_{0} combining investigations on (010010) and (2ˉ01\bar{2}01) surface cuts. This result falls within the broad range of values predicted by theoretical calculations for undoped β\beta-Ga2_2O3_3. The result is also comparable to recent density functional calculations using the Gaussian-attenuation-Perdue-Burke-Ernzerhof hybrid density functional, which predict an average effective mass of 0.267m00.267m_{0} (arXiv:1704.06711 [cond-mat.mtrl-sci]). Within our uncertainty limits we detect no anisotropy for the electron effective mass, which is consistent with most previous theoretical calculations. We discuss upper limits for possible anisotropy of the electron effective mass parameter from our experimental uncertainty limits, and we compare our findings with recent theoretical results

    Electronic Structure of an Oxygen Vacancy in Al2O3 from the Results of Ab Initio Quantum-Chemical Calculations and Photoluminescence Experiments

    Full text link
    The electronic structure of an oxygen vacancy in α-Al 2O3 and γ-Al2O3 is calculated. The calculation predicts an absorption peak at an energy of 6.4 and 6.3 eV in α-Al2O3 and γ-Al2O3, respectively. The luminescence and luminescence excitation spectra of amorphous Al2O3 are measured using synchrotron radiation. The presence of a luminescence band at 2.9 eV and a peak at 6.2 eV in the luminescence excitation spectrum indicates the presence of oxygen vacancies in amorphous Al2O3. © 2010 Pleiades Publishing, Ltd.ACKNOWLEDGMENTS This work was supported by the Siberian Branch, Russian Academy of Sciences (integration project no. 70)

    Atomic and electronic structure of amorphous and crystalline hafnium oxide: X-ray photoelectron spectroscopy and density functional calculations

    Get PDF
    The atomic structure of amorphous and crystalline hafnium oxide ͑HfO 2 ͒ films was examined using x-ray diffractometry and Hf edge x-ray absorption spectroscopy. According to the x-ray photoelectron spectroscopy and band data calculated by the density functional method, we found that the valence band of HfO 2 consists of three subbands separated by ionic gaps. The upper subband is formed by O 2p, Hf 4f, and Hf 5d states; the intermediate subband is formed by O 2s and Hf 4f states, whereas the lower narrow subband is mainly formed by Hf 5p states. The energy gap of amorphous HfO 2 is 5.7 eV as determined by electron energy loss spectroscopy. The band calculation results indicate the existence of light ͑0.3m 0 ͒ and heavy ͑8.3m 0 ͒ holes in the HfO 2 film and the effective mass of electron lies in the interval of 0.7m 0 -2.0m 0

    First Measurement of Monoenergetic Muon Neutrino Charged Current Interactions

    Full text link
    We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K+μ+νμK^+ \rightarrow \mu^+ \nu_\mu) at the NuMI beamline absorber. These signal νμ\nu_\mu-carbon events are distinguished from primarily pion decay in flight νμ\nu_\mu and νμ\overline{\nu}_\mu backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ\sigma level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=EνEμ\omega=E_\nu-E_\mu), and total cross section for these events is extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω\omega using neutrinos, a quantity thus far only accessible through electron scattering.Comment: 6 pages, 4 figure

    A Search for Electron Antineutrino Appearance at the Δm2\Delta m^2 \sim 1 eV2\mathrm{eV}^{2} Scale

    Get PDF
    The MiniBooNE Collaboration reports initial results from a search for νˉμνˉe\bar{\nu}_{\mu}\to\bar{\nu}_e oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39×10203.39 \times 10^{20} protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200<EνQE<3000200 < E_{\nu}^{QE} < 3000 MeV: 144 electron-like events have been observed in this energy range, compared to an expectation of 139.2±17.6139.2 \pm 17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested by data from the Liquid Scintillator Neutrino Detector at Los Alamos National Laboratory.Comment: 5 pages, 3 figures, 2 table
    corecore