83 research outputs found
Retrotransposon mapping in spider monkey genomes of the family Atelidae (Platyrrhini, Primates) shows a high level of LINE-1 amplification
To investigate the distribution of LINE-1 repeat sequences, a
LINE-1 probe was Fluorescence In Situ Hybridized (FISH) on the
chromosomes of Ateles geoffroyi and Ateles fusciceps (Atelidae); a
LINE-1 probe was also mapped on Cebuella pygmaea (Cebidae)
and used as an outgroup for phylogenetic comparison. Ateles spider
monkeys have a highly rearranged genome and are an ideal model
for testing whether LINE-1 is involved in genome evolution. The
LINE-1 probe has been mapped in the two Atelidae species for the
first time, revealing a high accumulation of LINE-1 sequences
along chromosomal arms, including telomeres, and a scarcity of
LINE-1 signals at centromere positions. LINE-1 mapping in C. pygmaea (Cebidae) revealed signals at centromere positions and along
chromosome arms, which was consistent with previous published
data from other Cebidae species. In a broader sense, the results were
analyzed in light of published data on whole-chromosomal human
probes mapped in these genomes. This analysis allows us to speculate about the presence of LINE-1 sequences at the junction of
human chromosomal syntenies, as well as a possible link between
these sequences and chromosomal rearrangements
Repetitive sequence distribution on Saguinus, Leontocebus and Leontopithecus tamarins (Platyrrhine, Primates) by mapping telomeric (TTAGGG) motifs and rDNA loci
Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic re-lationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ri-bosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedi-pus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16–17 and 19–22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phy-logenetic framework, and in addition to data from previous studies, we underline synapo-morphies and apomorphisms that appeared during the diversification of this group of New World monkeys
Transcription of a protein-coding gene on B chromosomes of the Siberian roe deer (Capreolus pygargus)
BACKGROUND: Most eukaryotic species represent stable karyotypes with a particular diploid number. B chromosomes are additional to standard karyotypes and may vary in size, number and morphology even between cells of the same individual. For many years it was generally believed that B chromosomes found in some plant, animal and fungi species lacked active genes. Recently, molecular cytogenetic studies showed the presence of additional copies of protein-coding genes on B chromosomes. However, the transcriptional activity of these genes remained elusive. We studied karyotypes of the Siberian roe deer (Capreolus pygargus) that possess up to 14 B chromosomes to investigate the presence and expression of genes on supernumerary chromosomes. RESULTS: Here, we describe a 2 Mbp region homologous to cattle chromosome 3 and containing TNNI3K (partial), FPGT, LRRIQ3 and a large gene-sparse segment on B chromosomes of the Siberian roe deer. The presence of the copy of the autosomal region was demonstrated by B-specific cDNA analysis, PCR assisted mapping, cattle bacterial artificial chromosome (BAC) clone localization and quantitative polymerase chain reaction (qPCR). By comparative analysis of B-specific and non-B chromosomal sequences we discovered some B chromosome-specific mutations in protein-coding genes, which further enabled the detection of a FPGT-TNNI3K transcript expressed from duplicated genes located on B chromosomes in roe deer fibroblasts. CONCLUSIONS: Discovery of a large autosomal segment in all B chromosomes of the Siberian roe deer further corroborates the view of an autosomal origin for these elements. Detection of a B-derived transcript in fibroblasts implies that the protein coding sequences located on Bs are not fully inactivated. The origin, evolution and effect on host of B chromosomal genes seem to be similar to autosomal segmental duplications, which reinforces the view that supernumerary chromosomal elements might play an important role in genome evolution
Pinniped Karyotype Evolution Substantiated by Comparative Chromosome Painting of 10 Pinniped Species (Pinnipedia, Carnivora)
Numerous Carnivora karyotype evolution investigations have been performed by classical and molecular cytogenetics and were supplemented by reconstructions of the Ancestral Carnivora Karyotype (ACK). However, the group of Pinnipedia was not studied in detail. Here we reconstruct pinniped karyotype evolution and refine ACK using published and our new painting data for 10 pinniped species. The combination of human (HSA) and domestic dog (CFA) whole-chromosome painting probes was used for the construction of the comparative chromosome maps for species from all three pinniped families: Odobenidae– Odobenus rosmarus Linnaeus, 1758, Phocidae – Phoca vitulina Linnaeus, 1758, Pusa sibirica Gmelin, 1788, Erignathus barbatus Erxleben, 1777, Phoca largha Pallas, 1811, Phoca hispida Schreber, 1775 and Otariidae – Eumetopias jubatus Schreber, 1775, Callorhinus ursinus Linnaeus, 1758, Phocarctos hookeri Gray, 1844, Arctocephalus forsteri Lesson, 1828. HSA and CFA autosome painting probes have delineated 32 and 68 conservative autosome segments in the studied genomes. The comparative painting in Pinnipedia supports monophyletic origin of pinnipeds, shows that pinniped karyotype evolution was characterized by slow rate of genome rearrangements (less then one rearrangement per 10 million years), provides strong support for refined structure of ACK with 2n = 38 and specifies plausible order of dog chromosome synthenic segments on ancestral Carnivora chromosomes. The heterochromatin, telomere and ribosomal DNA distribution was studied in all 10 species
Improving Illumina assemblies with Hi-C and long reads : An example with the North African dromedary
Researchers have assembled thousands of eukaryotic genomes using Illumina reads, but traditional mate-pair libraries cannot span all repetitive elements, resulting in highly fragmented assemblies. However, both chromosome conformation capture techniques, such as Hi-C and Dovetail Genomics Chicago libraries and long-read sequencing, such as Pacific Biosciences and Oxford Nanopore, help span and resolve repetitive regions and therefore improve genome assemblies. One important livestock species of arid regions that does not have a high-quality contiguous reference genome is the dromedary (Camelus dromedarius). Draft genomes exist but are highly fragmented, and a high-quality reference genome is needed to understand adaptation to desert environments and artificial selection during domestication. Dromedaries are among the last livestock species to have been domesticated, and together with wild and domestic Bactrian camels, they are the only representatives of the Camelini tribe, which highlights their evolutionary significance. Here we describe our efforts to improve the North African dromedary genome. We used Chicago and Hi-C sequencing libraries from Dovetail Genomics to resolve the order of previously assembled contigs, producing almost chromosome-level scaffolds. Remaining gaps were filled with Pacific Biosciences long reads, and then scaffolds were comparatively mapped to chromosomes. Long reads added 99.32 Mbp to the total length of the new assembly. Dovetail Chicago and Hi-C libraries increased the longest scaffold over 12-fold, from 9.71 Mbp to 124.99 Mbp and the scaffold N50 over 50-fold, from 1.48 Mbp to 75.02 Mbp. We demonstrate that Illumina de novo assemblies can be substantially upgraded by combining chromosome conformation capture and long-read sequencing.Peer reviewe
Karyotype Evolution in 10 Pinniped Species: Variability of Heterochromatin versus High Conservatism of Euchromatin as Revealed by Comparative Molecular Cytogenetics
Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone marten whole-chromosome painting probes to obtain comparative chromosome maps among species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida, Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding) methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been accompanied by few fusion events (less than one rearrangement per 10 million years) and by novel intrachromosomal changes including the emergence of new centromeres and pericentric inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes driven by constitutive heterochromatin variation likely has played an important role in karyotype evolution of pinnipeds, thereby contributing to the differences of pinnipeds’ chromosome sets
Recommended from our members
Development and Application of Camelid Molecular Cytogenetic Tools
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular
importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence
in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome
by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The
genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were
ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no
markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical
cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal
translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as
comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small
LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical
cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.Keywords: FISH, BAC library, Translocation, Cytogenetics, Minute chromosome, Alpac
X Chromosome Evolution in Cetartiodactyla
The mammalian X chromosome is characterized by high level of conservation. On the contrary the Cetartiodactyl X chromosome displays variation in morphology and G-banding pattern. It is hypothesized that X chromosome has undergone multiple rearrangements during Cetartiodactyla speciation. To investigate the evolution of this sex chromosome we have selected 26 BAC clones from cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution maps were obtained by fluorescence in situ hybridisation in a representative range of cetartiodactyl species from different families: pig (Suidae), gray whale (Eschrichtiidae), pilot whale (Delphinidae), hippopotamus (Hippopotamidae), Java mouse deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), giraffe (Giraffidae). To trace the X chromosome evolution during fast radiation in speciose families, we mapped more than one species in Cervidae (moose, Siberian roe deer, fallow deer and Pere David’s deer) and Bovidae (musk ox, goat, sheep, sable antelope, nilgau, gaur, saola, and cattle). We have identified three major conserved synteny blocks and based on this data reconstructed the structure of putative ancestral cetartiodactyl X chromosome. We demonstrate that intrachromosomal rearrangements such as inversions and centromere reposition are main drivers of cetartiodactyl’s chromosome X evolution
- …