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Abstract: Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone
marten whole-chromosome painting probes to obtain comparative chromosome maps among
species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida,
Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos
hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with
telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide
treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding)
methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of
localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement
common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily
conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral
Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been
accompanied by few fusion events (less than one rearrangement per 10 million years) and by
novel intrachromosomal changes including the emergence of new centromeres and pericentric
inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes
driven by constitutive heterochromatin variation likely has played an important role in karyotype
evolution of pinnipeds, thereby contributing to the differences of pinnipeds’ chromosome sets.
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1. Introduction

Genome analysis for related species within taxonomic assemblages enriches our evolutionary
perspective and provides new information about the speciation process. Comparative chromosome
maps obtained by means of chromosome-painting probes reveal patterns of karyotype transformations
during evolution and allow to formulate hypotheses about ancestral karyotype composition.
Constitutive heterochromatin (CH), an important genome component with a cryptic role and poorly
understood functions, is filled with diverse and often complex repetitive elements that are challenging
for resolution and can confound bioinformatic assembly of genome sequences. Repeated sequences
perform regulatory functions and ensure spatial organization of chromatin in the nucleus [1,2]. CH
may be involved in structural chromosomal rearrangements [3] due to nonhomologous-recombination
susceptibility [1]. Heterochromatin may be present in the genome as near-centromeric blocks, interstitial
blocks, or additional chromosomal arms. CH changes may occur in conserved genomes and in highly
rearranged genomes [4]. Comparative chromosome maps can help to unravel repeat structure and
organization, to bridge scaffolds, and to validate chromosome level assemblies of genome sequences.

In recent decades, patterns of mammalian genome evolution were revealed by determining the
rates of chromosome exchanges and by documenting the types of rearrangements within major orders
that had shaped genomes of extant species on the basis of reconstructed ancestral karyotypes [5–10].
Carnivora (includes two branches: Feliformia and Caniformia) is an order with well-characterized
patterns of chromosome evolution [11]. There are two types of evolutionary changes that dominate
in certain groups of the order: chromosomal sets of Canidae, Ursidae, and Viverridae have derived
mainly from the fusion–fission of ancestral elements, whereas inversions and centromere repositioning
events have mostly occurred during karyotype evolution of other families of Carnivora.

Among Caniformia families, Pinnipedia (seals and walrus) has a nearly unchanged ancestral karyotype.
Pinnipeds represent a group of semiaquatic animals with advanced adaptations to life in water, thus raising
a hypothesis that their conserved genome disposition is associated with acquired aquatic adaptations.

Ulfur Arnason has revealed remarkable karyotype conservatism of this group by classic and
banding cytogenetics [4,12]. This high syntenic conservatism has been confirmed by molecular
cytogenetics [8,9], which has identified the minimum number of fusion events during 25 million years
of pinniped radiation into three families: Odobenidae, Otariidae, and Phocidae. In the 1980s–1990s,
molecular composition of heterochromatin in Carnivora was studied [13–18]. Different classes of repeats
were shown to characterize different families, pointing to rapid evolution and repeat diversification
during speciation. With only a few genomes of pinnipeds sequenced and assembled into chromosomes
to date [19], comparative chromosome maps would be an important step in pinniped genome research.

Here we investigated remarkable karyotype conservatism among pinnipeds by chromosome
painting in a wider range of Otariidae and Phocidae species. With the help of high-resolution
canine probes, we tested for the intrachromosomal rearrangements that could be present in otherwise
conserved syntenic groups. We determined whether heterochromatin variation plays some part in the
genomes featuring high levels of syntenic conservatism.

2. Materials and Methods

2.1. Species Sampled and an Ethics Statement

Tissue samples from wild-caught animals were used here (Table 1). The collection of samples
from the walrus, Steller sea lion, and Baikal seal has been described earlier [9]. Samples from the
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bearded seal and ringed seal were collected during aboriginal quota sealing in the coastal waters
of the Bering Sea (Mechigmen Bay, Chukotka, Russia). Ear biopsy was performed on northern fur
seals under inhalation anesthesia (isoflurane) during a veterinary examination. Tissue biopsies of the
spotted seal were obtained from the animals sampled for research purposes by the Magadan branch
staff of the Russian Research Institute of Fisheries and Oceanography. All of the tissue samples were
collected according to procedures approved by the Ethics Committee on Animal and Human Research
at the Institute of Molecular and Cellular Biology, Russia (protocol No. 01/20 of 11 February 2020).
The harbor seal, New Zealand fur seal, and New Zealand sea lion fibroblast cultures were obtained
from the Laboratory of Genomic Diversity (National Cancer Institute, Frederick, MD, USA).

2.2. Cell Culture and Chromosome Preparation

Storage and transportation of the tissue samples, establishment of primary fibroblast cell lines,
and chromosome preparation were performed as described before [9]. We tried to prepare fixed-cell
suspensions for cytogenetic analysis at the earliest passages possible. A propensity for the emergence
of tetraploid cells in pinniped fibroblast cultures has been noted previously [20]. We also observed
a certain proportion of tetraploid cells, approximately 3–9%. This feature depended on the passage
number, but the species karyotype was found to be stable in diploid cells.

2.3. Differential Staining

Standard GTG (G-bands by trypsin using Giemsa) banding staining was performed [21]. CBG
(C-bands revealed by barium hydroxide treatment followed by Giemsa staining) [22] and CDAG
(Chromomycin A3-DAPI after G-banding) methods [23] for CH visualization were used. To determine
nucleotide composition by CDAG staining, two fluorochromes with opposite nucleotide specificity
were utilized: DAPI (4′,6-diamidino-2-phenylindole; binds to adenine-and-thymine–rich regions;
AT-binding) and CMA3 (Chromomycin A3; binds to guanine-and-cytosine–rich regions; GC-binding).
Chromosomes in the karyotypes of all the analyzed pinniped species were arranged by length.

2.4. Preparation and Characterization of Chromosome-Specific Painting Probes

Sets of human, domestic dog, and stone marten chromosome–specific painting probes have been
described previously [24–26]. In the present study, the dog chromosomal nomenclature follows to
the one published by Yang et al. [24]. Whole-chromosome painting probe libraries of the domestic
dog were employed for fluorescence in situ hybridization (FISH) analysis of genomes of one true seal
species (the bearded seal Erignathus barbatus) and three eared seals (Arctocephalus forsteri, Callorhinus
ursinus, and Phocarctos hookeri). Some human and stone marten painting probes were used to clarify
ambiguous mapping positions in the ringed seal (Phoca hispida), spotted seal (Phoca largha), and harbor
seal (Phoca vitulina).

2.5. Detection of Nucleolus Organizer Regions (NORs) and Telomeric Repeats

A plasmid containing ribosomal DNA (rDNA) [27] was amplified with the GenomePlex Whole
Genome Amplification Kit (Sigma-Aldrich Co., St. Louis, MO, USA). Labeling of the plasmid DNA
was performed by means of the GenomePlex WGA Reamplification Kit (Sigma-Aldrich Co.) with
biotin-16-dUTP incorporation. Telomere repeats were synthesized and labeled by nontemplate PCR
with primers (TTAGGG)5 and (CCCTAA)5 [28].

2.6. Image Acquisition and Data Processing

Digital images of hybridization signals were captured as described elsewhere [24,26,29] using
the VideoTest system (Zenit, St. Petersburg, Russia) and a Zeiss microscope Axioscope 2 (Zeiss,
Oberkochen,) equipped with a charge-coupled device (CCD) camera (Jenoptik, Jena, Germany). Images
of metaphase spreads were edited in Corel Paint Shop Pro Photo X2 (Corel, Ottawa, Canada).
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Table 1. Description of the species used in this study.

No Family Latin Names Code 2n Sex Common Names Reference for Fluorescence In
Situ Hybridization (FISH) Data

1 Odobenidae
Walruses Odobenus rosmarus OROS 32 M walrus [9]

2 Arctocephalus forsteri AFOR 36 F New Zealand fur seal (South Australian fur seal) this article
3 Callorhinus ursinus CURS 36 M northern fur seal this article
4 Phocarctos hookeri PHOK 36 M New Zealand sea lion this article
5

Otariidae
Eared seals

Eumetopias jubatus EJUB 36 M northern sea lion (Steller’s sea lion) [9]

6 Erignathus barbatus EBAR 34 F bearded seal (square flipper seal) this article
7 Phoca hispida PHIS 32 M ringed seal
8 Phoca largha PLAR 32 F spotted seal (largha seal)
9 Phoca vitulina PVIT 32 M harbor seal (common seal) [8]

10

Phocidae
True seals

Pusa sibirica PSIB 32 M Baikal seal [9]

11 Canidae Canis familiaris CFA 78 domestic dog

12 Mustelidae Martes foina MFO 38 stone marten

13 Hominidae Homo sapiens HSA 46 human
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3. Results

3.1. Hybridization of Dog Probes onto Chromosomes of Four Pinniped Species

Dog (CFA) and some stone marten (MFO) chromosome-specific libraries were utilized to identify
homologous segments in genomes of four pinniped species: one true seal and three eared seals.
Arctocephalus forsteri and Phocarctos hookeri karyotypes are described here for the first time. Each CFA
probe stained one to five fragments in the karyotypes of the bearded seal, Australian fur seal, northern
fur seal, and New Zealand sea lion. Sixty-eight homologous autosomal segments were detected in
the genomes of all the studied species. X-chromosome synteny was conserved among these pinniped
karyotypes. Chromosome maps of the New Zealand fur seal, New Zealand sea lion, northern fur seal,
and bearded seal are presented in Figure 1. Karyotypes of the pinnipeds analyzed here were deposited
in the Atlas of Mammalian Chromosomes [4].

Figure 1. Cont.
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Figure 1. GTG banded karyotypes of (a) the New Zealand fur seal (AFOR, 2n = 36), (b) northern fur
seal (CURS, 2n = 36), (c) New Zealand sea lion (PHOK, 2n = 36), and (d) bearded seal (EBAR, 2n = 34)
with the assignment of homology to human (HSA), dog (CFA), and stone marten (MFO) chromosomes.
Nucleolus organizer regions are marked as NOR. The square denotes a centromere position on the
corresponding chromosome. * Heterochromatin regions not painted by any dog probe.

3.2. GTG Banding of Spotted Seal and Harbor Seal Chromosomes

We performed GTG staining of metaphase chromosomes of ringed and spotted seals. The Phoca
hispida (2n = 32) chromosome set has been published previously [20]. The results on Phoca largha
(2n = 32) presented here are consistent with the literature data [30]. The G-banding patterns of P. hispida
and P. largha are very similar to the pattern in the Baikal seal (Pusa sibirica, 2n = 32; Figure 2 in ref. [9]).
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Figure 2. The GTG banded karyotype of (a) the ringed seal (PHIS, 2n = 32) and (b) spotted seal (PLAR,
2n = 32). The square denotes a centromere position. Sites of rDNA gene clusters are marked as NOR.

3.3. Homologous Segments in Pinniped Genomes as Determined by FISH

The comparative chromosome painting helped us to identify homologous segments among the
karyotypes of four other pinniped species in addition to previously published data on two true seals,
the northern sea lion, and walrus [8,9] (see Table S1).

An omission in our previous paper [9] is corrected here by the addition to the Ancestral Carnivora
Karyotype (ACK) scheme the assignment of the fourth conserved element of CFA chromosome 28
onto ACK 9p dist. This additional fragment has not been seen in previous painting experiments on
Carnivora [31,32]. In the Baikal seal, walrus, and northern sea lion, the comparative chromosome
painting showed four fragments corresponding to CFA 28 (one on ACK 2, two on ACK 3, and one on
ACK 9) [9]. In this study, we reliably detected the fourth fragment, homologous to chromosome CFA
28, in four other pinniped species: the bearded seal, New Zealand fur seal, northern fur seal, and New
Zealand sea lion (Figure 1, chromosomes AFOR 7p, CURS 9p, PHOK 7p, and EBAR 9p).
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3.4. CH in Pinniped Genomes

For identifying CH, both a standard banding cytogenetic method (CBG banding) and a new
technique for the visualization of nucleotide composition of CH (CDAG method) were used as described
in refs. [22,23]. Regions that did not hybridize with the painting probes in the FISH experiments are
indicated by asterisks on the comparative chromosome maps (Figure 1) and were found to be composed
of heterochromatin by CDAG consecutive G- and C-banding staining. The DAPI staining performed
after the denaturation of the chromosome preparations subjected to the cross-species painting was taken
into account too in this analysis. Here, we employed previously published comparative chromosome
maps of the walrus and Steller sea lion [9], signifying areas of CH. These maps are given in the
Supplement (Figure S1).

In general, CH is scarce in genomes of pinnipeds. CBG staining yielded small pericentromeric
blocks in walrus and true seal karyotypes except for the bearded seal (Figure 3a–d). Compared to
true seals, the genomes of eared seals carry more CH (Figure 3f–i): all the studied eared seal species
have additional telomeric heterochromatin segments on p-arms of some autosome pairs and larger
pericentromeric blocks.

Figure 3. Cont.
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Figure 3. CBG banded karyotypes of (a) the walrus and true seals: (b) the bearded seal *, (c) Baikal seal
**, (d) ringed seal, and (e) harbor seal. For the harbor seal, as is the case for all the species in this article,
chromosomes are arranged in descending order. Correspondence to the harbor seal nomenclature of
Fronicke et al [8] is given in parentheses. * The C-banding fully matches the one published earlier [20].
Note additional telomeric heterochromatin segments on p-arms of four autosome pairs in EBAR
(asterisk). ** Note an intercalary heterochromatin segment in PSIB1p near the region containing rDNA
genes (asterisk). CBG banded karyotypes of the eared seals: (f) the New Zealand fur seal, (g) northern
fur seal *, (h) New Zealand sea lion, and (i) northern sea lion. * Interstitial heterochromatin in CURS1p,
CURS 4q, and CURS10q and additional telomeric heterochromatin segments on p-arms are marked by
an asterisk.

Using an array of staining assays, we determined the types, localization, and composition of
heterochromatin areas in pinnipeds (Figure 4, Table 2). An interesting phenomenon was observed:
parts of pericentromeric CH blocks were equally brightly stained by DAPI and Chromomycin A3.
This was especially true for the bearded seal and less so for the walrus’s and eared seals’ chromosomes.
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Figure 4. CDAG staining of metaphase spreads of pinnipeds: GTG banding (left) followed by
formamide heat denaturation and CMA3/DAPI staining (right). (a) The walrus (OROS), (b) bearded
seal (EBAR), (c) ringed seal (PHIS), (d) Baikal seal (PSIB), and (e) northern sea lion (EJUB).

Table 2. Distribution and nucleotide composition of the heterochromatin blocks in pinnipeds.

Location of CH
AT/GC Composition of CH
Detected by Fluorochromes

DAPI and CMA3
Notes

Centromeric region

varies but GC-rich in most species: CMA3+

DAPI+
near-centromeric blocks on some

autosomes of walrus and true
seals (but not in bearded seal

CMA3+/DAPI+ 4–7 small and mid-sized
autosomal pairs in eared seals

Pericentromeric region in q-arms AT-rich: DAPI+

Terminal CH in p-arms GC-rich in most species: CMA3+;
DAPI+ on AFOR 5p absent in Phoca and Pusa

Interstitial CH AT-rich: DAPI+ in eared seals

Our analysis of the alternation of dog painting probes’ staining patterns and in heterochromatin
regions uncovered patterns of variation in CH among pinnipeds. Species chromosomal sets proved to
differ in size and composition of pericentromeric and intercalary heterochromatin and in the number
of autosomes carrying additional heterochromatin segments on short arms. Figure 5a–c shows the
variation of the composition of homologous walrus and seals’ chromosomes corresponding to three
ancestral autosomes: ACK 10 (MFO 11), ACK 11 (MFO 12), and ACK 5 (MFO 5).
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Figure 5. Cont.
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Figure 5. The variation in the amount, composition, and distribution of heterochromatin in conserved
syntenic groups of pinnipeds. Fluorescent in situ hybridization of CFA11 (green) and CFA2 (red)
on DAPI (blue) stained chromosomes. (a) CH addition in four species of pinnipeds on p-arms of
homologs of stone marten chromosome MFO11. (b) CH addition on p-arms, centromere size, and
nucleotide composition variation on MFO 12 homologs in eared seals. (c) Different sizes and nucleotide
compositions of heterochromatin p-arms among the eared seals. Intercalary heterochromatin in CURS
4q is DAPI positive. Note the possible duplication of the segment homologous to CFA 11 in EBAR10
and PSIB1. The segment order was revealed by G-banding followed by mapping of dog (CFA) painting
probes (red and green in FISH images of DAPI-stained chromosomes). Segments that did not stain
with any dog probe represent CH and are highlighted in blue (DAPI+) or black (DAPI−). Stone marten
(MFO) chromosomes representing the ancestral form of the syntenic group in Carnivora are borrowed
from ref. [32]. Pinniped families are designated by color boxes: pink, Otariidae; green, Phocidae; and
yellow, Odobenidae.

3.5. The First Intrachromosomal Rearrangement Detected in Pinnipeds

The dog painting probes helped to identify for the first time an intrachromosomal rearrangement
common for eared seals and the walrus (Figure 6). Among the pinnipeds, hybridization of the dog
autosome 12 library revealed a difference in the localization of this probe relative to the centromere.
In true seals, this conserved element is detectable as a whole near-centromeric segment on the long arm
(EBAR 7q and PSIB 8q). In the walrus and eared seals, this segment is divided into two parts by the
centromeric region, so that a small fragment of CFA 12 is detectable on the short arm of AFOR 8, CURS 7,
EJUB 9, PHOK 8, and OROS 9. The chromosome level assemblies may be useful for testing whether an
inversion or simple centromere repositioning has happened in an Otariidae/Odobenidae ancestor.
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Figure 6. Pericentric inversion or centromere repositioning (?) in Odobenidae and Otariidae as revealed
by dog painting probes CFA 37/12 (ACK 6). Pinniped families are designated by color boxes: green,
Phocidae; pink, Otariidae; and yellow, Odobenidae.

3.6. The Y-Chromosome Features of Pinnipeds

Male specimens were available for seven out of the 10 species included in this investigation.
The Y chromosome is readily recognizable in the analyzed pinnipeds, being the smallest bi-armed
chromosome of the complement (Figures 2 and 3). Only in the northern sea lion, is the Y chromosome
acrocentric and has a larger size, approximately half the length of Xq (Figure S1a). As a rule, in seals,
the CBG banding detected CH on the short arm and in the centromeric region of the Y chromosome.
This part of the male gonosome must bear AT-enriched repeated sequences because it was DAPI
positive. CMA3 highlighted the distal part of Yq in all the seals being analyzed (Figure 4). The male
gonosome of the walrus differs from that of seals and contains CBG-, DAPI-, and CMA3-positive
regions only in the centromeric part. We found an unusual NOR site on the Yp of the ringed seal
Phoca hispida.

3.7. Localization of NORs and Telomeric Repeats

In all of the species studied here, the NOR was situated on one homologous autosomal pair
(Figure 7). Ribosomal DNA sites unusual for pinnipeds were revealed on the Y chromosome of the
ringed seal (Phoca hispida) and on autosome 6 of the harbor seal (Phoca vitulina). In both cases, these
additional clusters of ribosomal genes were detectable in all of the analyzed cells and were substantially
smaller than the main NOR site on PHIS 1p and PVIT 1p (s), respectively.
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Figure 7. Distributions of telomeric repeats and rDNA clusters on chromosomes of pinnipeds.
G-banding (left) followed by FISH (right) of a telomeric probe (TTAGGG)n (red) and an 18S, 5.8S,
and 28S rDNA probe (green) on DAPI-stained chromosomes. (a) The walrus and true seals, (b) the
bearded seal, (c) ringed seal, (d) spotted seal, (e) Baikal seal, and (f) harbor seal. The telomeric probe
highlighted the termini of all chromosomes in the investigated species. Note differences in the size
and signal intensity on telomeres (some were very faint) in species, with the walrus’s telomeric blocks
being larger than those in the other species. No interstitial telomeric sites marking fusions of ancestral
elements were detectable in pinnipeds here [33]. The chromosome numbers are indicated for NOR
bearing chromosomes. NOR sizes vary between homologs among several species. The eared seals:
(g) the New Zealand fur seal, (h) northern fur seal, (i) New Zealand sea lion, and (j) northern sea lion.
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4. Discussion

The first and subsequent cytogenetic studies have detected low variation in the diploid number
(32–36) and similar G-banding patterns among pinniped karyotypes [20,34–36], as confirmed later at
the molecular cytogenetic level. Human and dog chromosome-painting probes have identified 22 and
68 conserved segments in the genomes of seals and walruses, respectively [8,9]. These findings reflect
high conservatism of pinniped karyotypes and a low rate of their genome evolution in comparison
with representatives of the canoid branch of Carnivora. More than twice as many human conserved
autosomal segments have been found in highly rearranged genomes of Mephitidae (40), Ursidae (44),
and Canidae (67–73) as compared to pinnipeds (22) [6,10,24,29,31,37–39]. In contrast to euchromatin
conservatism, we found differences in the banding pattern and/or morphology of conserved syntenic
groups across pinnipeds.

4.1. Heterochromatin Diversity among Pinniped Karyotypes

Conserved karyotypes of pinnipeds differ in the morphology of some autosomes shaped by
varying heterochromatin regions. Heterochromatic regions are difficult to determine unless a special
approach to the characterization of satellite DNA is used [40,41]. Regions of chromosomes enriched
with repeated sequences are not highlighted during comparative painting because chromosome-specific
painting probes contain libraries of unique sequences or evolutionarily distant repeats. Therefore,
a combination of painting and different banding techniques should provide additional information
about the euchromatin–heterochromatin structure of each chromosome.

We revealed an interesting phenomenon of composition diversity of centromeric and
pericentromeric CH on homologous chromosomes among pinnipeds (Figure 5b,c, and Figure 6).
Although most of the centromeres are GC-rich, there are autosomes with AT-enriched centromeric CH
or those that do not show the predominance of certain nucleotide combinations. For example, in the
bearded seal, some centromeres stained with equal intensity with both fluorochromes. Apparently,
in such cases, AT- and GC-enriched repeats are interspersed in the centromeric regions.

We observed variation of p-arms’ heterochromatin (Figures 5a–c and 6) after detecting an addition
of the heterochromatin blocks and/or expansion of a heterochromatin block, in an extreme case of
CURS11p, causing an increase in the fundamental number (FNa = 70) as compared to the northern
sea lion (FNa = 68) [20,34]. We also observed rare intercalary heterochromatin sites in CURS4q and
CURS10q (Figure 5c). These CH additions and expansions do not change the order of syntenic segments.
In several cases, conserved synteny was found to be split into two parts owing to heterochromatic
near-centromeric inserts as in eared seals and the walrus (Figures 5b and 6).

Heterochromatin segments may be conserved too, as in apomorphy. One such instance inferred
from comparative chromosome maps is the chromosomes homologous to cat autosome Felis catus,
CFA) A1q (HSA 5). This chromosomal segment carries an additional heterochromatic short arm in
studied eared seal (except for AFOR 5p) and in other carnivores’ karyotypes analyzed by chromosome
painting, indicating an ancestral origin of this heterochromatin segment [26,31,32,42,43]. Homologous
autosomes with similar heterochromatin patterns belong to different pinniped branches (Figure 5a),
and this effect can be regarded as an example of plesiomorphy.

In summary, the majority of ancestral syntenies showed a wide variety of CH characteristics
(localization, size, and nucleotide composition) despite small sizes of heterochromatin areas. Among
the studied species, the numbers of autosomes affected by CH variation were different. Except for
mustelids, the corresponding outgroup homologs in the stone marten, felids, and other carnivoran
taxa do not feature such CH variation [10,32]. The heterochromatin diversity is also expressed in the
variation in the NOR and sex chromosomes among some pinniped species (SM1 and SM2). In toto,
we revealed a small amount of CH in the pinniped genomes, with the largest amount found in the
northern fur seal, walrus, and bearded seal and the smallest amount in the Baikal seal. Overall,
our findings suggest that the variation in heterochromatin has played a substantial role in pinniped
karyotype evolution.
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Karyotypes of all pinnipeds are similar, but at the same time, the species living together seem to
retain reproductive isolation. For example, there are no cytogenetic reports about interspecific hybrids
of three sympatric species: the ringed seal, spotted seal, and bearded seal. Interspecific hybrids of
southern fur seals of the genus Arctocephalus are known, but hybrid males have lower reproductive
success [44]. It is possible that the differences in heterochromatin elements affect the pairing of
homologous chromosomes during hybrid meiosis and diminish the formation of viable gametes.

The involvement of heterochromatin in genome functioning, adaptation, and speciation is still a
fundamental problem of modern genetics. The notion that CH is a genetically inactive part of the genome
has been refuted [1,45–50]. The position effect on gene expression depends on the proximity to the site
of CH and apparently may reflect intranuclear location of genes at interphase [51–54]. The observed
interspecies diversity among pinnipeds suggests that the combinations of hetero- and euchromatin
segments observed in the karyotypes of different species may be adaptive. Heterochromatin regions in
pinnipeds may contribute to interspecific differences and may perform a regulatory function. Given
that species of fur seals differ in forage and sexual behavior, in characteristics of the fur coat, and in
vocalization [55–57], further research is needed to determine functional properties of the repeated
sequences in their genomes.

4.2. The Intrachromosomal Rearrangement Detected in Pinnipeds

We noticed differences in the distribution of CFA 12 on p- and q-arms in homologs of ancestral
synteny ACK 6. In true seals, CFA 12 stained only the proximal part of the q-arm, but in the walrus
and eared seals, this probe additionally highlighted a proximal small part of the p-arm (Figure 6).
This finding may be the result of a pericentric inversion or centromere repositioning.

The application of high-resolution painting probes of the domestic dog and raccoon dog has
revealed cryptic inversions both in Caniformia and Feliformia branches of Carnivores [10,32,37,39,42,
58–60]. It has been reported that some ancestral autosomes are more prone to inversions in different
families and that some of these rearrangements may represent valuable cytogenetic signatures [32].
Inversion 37/12/1/12/1 in conserved synteny CFA 37/12/1 is common for at least three mustelid species
(the stone marten [32], American mink [58], and European badger (our unpublished data)) and involves
breaks in two conserved segments (CFA 1 and CFA 12). The rearrangement in the same syntenic
element in pinnipeds implies changes only in CFA 12. Consequently, different transformations have
occurred in the same syntenic element in different Carnivora groups having conserved genomes.

An alternative explanation for the observed difference in the structure of the ACK 6 homolog
revealed in both Otariidae and Odobenidae is a centromere repositioning without a change in the
gene order. New centromeres (neocentromeres) and centromere shifts have been detected in various
vertebrate species [61] including humans [62,63]. The sites commonly affected by the centromere
movements revealed in primates are located on the long arm of ACK 6, whereas in pinnipeds, the
supposed centromere displacement is directed toward the short arm (Figure 6). The nature of the
intrachromosomal rearrangement on ACK 6 homologs in pinnipeds (Table S1) may be determined by
the mapping of region-specific painting probes or BAC clones.

A potential rearrangement was detected here in the homologous segment on EBAR 10: painting
probe CFA 11 highlighted a twofold larger portion of the chromosome than that in eared seals
(Figure 6), likely indicating a duplication. The polyploidization of primary cell lines reported
earlier [20] in pinnipeds remains unexplained and may be used in the future to study the mechanisms
of genome instability.

4.3. The ACK Validated by the New Pinniped Painting Data

Reconstruction of ancestral karyotypes for taxa at different levels is an important step for the
compilation and classification of comparative cytogenetic data. The hypothesis about karyotype
structure of the ancestor of all Carnivora has been corrected at each stage of cytogenetics development.
At first, a “hypothetical primitive karyotype” with at least 2n = 34 [64] was published. Then, an
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ancestral karyotype called CAR containing 21–22 autosome pairs was proposed, taking into account
gene-mapping results on human and domestic cat [65,66]. A derivative hypothesis about ACK
composition is based on Zoo-FISH data from the cat and harbor seal [8]. This Z-CAR karyotype consists
of 38 elements, as is the ACK reconstructed by comparative painting of Feliformia and Caniformia [10].

Being a basal canoid group, pinnipeds are an important lineage for ACK reconstruction if
canoid families with substantially reorganized karyotypes (canids, ursids, and skunks) are ignored.
Consequently, the new chromosome maps of pinnipeds confirm 2n = 38 for the ACK. Elements
ACK3p/3q and ACK4p/4q are fused thereby reducing 2n from 42 to 38 [5]. The ACK syntenic groups
with the order of conserved segments updated with CFA28d, are presented in Figure 8. Overall, the
ACK is now fully integrated with the available painting data on key reference genomes (HSA, CFA,
FCA, and MFO; Table S1).
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Figure 8. The ACK (2n = 38) updated according to [9]. Conserved and rearranged chromosomes in each species (FCA and HSA) are highlighted in different shades
(dark and light). In CFA, the chromosomes represented by a single element in the ACK are shown in dark blue, whereas split chromosomes are each highlighted
in a different color. To the right of the ancestral chromosomes is the number from the ACK 2n = 42 nomenclature [5]. All seven syntenic associations of human
chromosomes shared by representatives of the Eutheria clade (HSA 3/21, 4/8p, 7/16p, 10p/12pq/22qt, 12qt/22q, 14/15, and 16q/19q) [5–7,37,67] were detected in pinniped
species [8,9]. Our present work confirmed that one fission (HSA1), one inversion (HSA4q/8p/4pq), and five fusions (1q/8p, 2q/13, 2/20, 19p+3/21, and 12qt/22pq+18)
distinguish the ACK from the ancestral Eutherian karyotype [6–10].
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4.4. Chromosome Evolution in Pinnipedia

The ancestral pinniped karyotype is identical to the ACK because no rearrangements have been
identified on a branch leading from the ACK to Pinnipedia [9]. The radiation into pinniped families
has been accompanied by several fusions leading to branches of Otariidae + Odobenidae, Phocidae,
Phocini, and Odobenus. ACK chromosomes 5, 16, and 18 were repeatedly involved in fusions in
pinnipeds, and the fusion sites include the same chromosomal termini likely prone to fusion. In two
fusions, the formation of new autosomes was accompanied by the appearance of evolutionarily new
centromeres [61,62] (ACK 12/16 in the Phocidae branch and ACK 16/18 in Odobenidae + Otariidae;
Figure 9). We identified one inversion/centromere repositioning that took place during the formation
of Phocidae/Odobenidae + Otariidae genomes. Specific accumulation of heterochromatin components
has occurred in each group of pinnipeds after separation into an independent branch (Figure 9,
designated +H).

Figure 9. A compiled scheme of karyotype evolution in Pinnipedia, including the species studied here
and species for which whole-genome sequencing data are available. The fusion of ancestral elements
is designated by “/”. +H: heterochromatin addition, ENC: evolutionarily new centromere, inv (CR?):
inversion or centromere repositioning. G G-banding only, P painting data, S whole-genome sequencing
data, and C-S chromosome level genome assembly (C-Scaffolds) [19,68]. The cytogenetic data are
consistent with the tree topology based on published Carnivora phylogenies affirming pinniped
monophyly [69]. The basal position of the walrus is supported by two extra fusion events [70].
The lineage of the northern fur seal first split from Otariidae ~8 mya [71,72]. The separation of the
bearded seal ~12 mya from the rest of Phocinae [70] is confirmed here. Substantial enrichment with
repeated sequences with variation of nucleotide composition has occurred during long-term monotypic
evolution in O. rosmarus, C. ursinus, and E. barbatus in contrast to fewer heterochromatin changes in
evolutionarily recent pinniped species. Cytogenetically, Phoca and Pusa and likely other genera with 2n
= 32 on this branch are linked by a single fusion (ACK 5/15). Overall, pinniped karyotype evolution has
had a slow rate of genome rearrangements with less than one rearrangement per 10 million years [5].

Recently, chromosome level genome assemblies for several pinniped species were released: for
Odobenus rosmarus (2n = 32), Phoca vitulina (2n = 32), Erignathus barbatus (2n = 34), Neomonachus
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schauinslandi (monk seal, 2n = 34), and Mirounga angustirostris (northern elephant seal, 2n = 34) [19].
The monk seal and northern elephant seal belong to the Monachinae subfamily with sister branch
Phocinae (Erignathus, Phoca, and Pusa here) inside Phocidae. There were no fusion/fission events during
Monachinae formation as evidenced by pairwise comparative plots of chromosome level scaffolds
between these species and E. barbatus.

The first cytogenetic studies on marine mammals in the 1970s–1980s revealed the conservatism of
chromosome sets and the stability of diploid numbers: 2n = 44 for most Cetacea and 2n = 32 to 36
in pinnipeds [12]. The observed karyotype uniformity is hypothesized to derive from characteristics
of the habitat and physiology. Comparative chromosome painting has uncovered an identical order
of syntenic segments in toothed and baleen whales [32,73,74] as well as in delphinids [75], just as
among the pinnipeds in the present study. The low numbers of interchromosomal rearrangements
giving rise to high conservatism of syntenic segments in cetacean and pinniped marine mammals seem
well established.

In addition, the evolution of the variable heterochromatic part of the genome in different
groups of marine mammals has been researched actively in whales and less so in pinnipeds.
Heterochromatin in whales reaches 25–30% of the genome and is composed of different families
of repeated sequences [76–82]. Heterochromatin is scarcer in pinnipeds than in whales. The walrus
and the studied species of seals display their own distinctive patterns of heterochromatin regions and
underlying repeat family diversity. Precise composition and organization of repeated sequences in
pinniped genomes remain to be determined. It seems clear, however, that molecular genetic approaches
have proved the second general property of marine mammals’ genomes: CH variation against the
background of high conservatism of the euchromatin part.

5. Conclusions

Here we expanded to eight the list of pinniped species with comparative chromosomal maps.
The resulting data confirm the high conservatism of syntenic elements in this group of marine mammals
relative to other carnivore groups. We postulate that the order of evolutionarily conserved segments
is common among the analyzed pinnipeds and is the same as that in the proposed karyotype of
the ancestor of the whole order Carnivora. Fusions of ancestral-karyotype elements are specific to
each branch of pinnipeds. Evolutionary changes at the subchromosomal level were revealed in two
events of evolutionarily new centromeres and one pericentric inversion/centromere repositioning.
The interspecific diversity due to variations in the heterochromatin component of pinniped karyotypes
are described for the first time. Thus, the karyotypic divergence of conserved genomes of pinnipeds
has occurred largely at the level of heterochromatin or via intrachromosomal repositioning.

Supplementary Materials: The following is available online at http://www.mdpi.com/2073-4425/11/12/1485/s1,
Figure S1: GTG-banded karyotype of: (a) the Steller sea lion (EJUB, 2n = 36), (b) the walrus (OROS, 2n = 32),
with the assignment of homology to human (HSA), dog (CFA) and stone marten (MFO) chromosomes. Nucleolus
organizer regions are marked as NOR. The square denotes the centromere position on the corresponding
chromosome. *—heterochromatin regions not painted by any dog probe. The dog chromosomal nomenclature
follows Yang et al. [24]; Table S1: Correspondence of pinniped (the bearded seal (EBAR), the New Zealand fur
seal (AFOR), the northern fur seal (CURS) and the New Zealand sea lion (PHOK)) chromosomes with dog
(CFA), human (HSA), ancestral carnivore karyotype (ACK1), stone marten (MFO)2 and cat (FCA)2 chromosomes.
Correspondence with human chromosome is based on our FISH results, human chromosome segments are
designated according to published data (1Beklemisheva et al. 2016, 2Nie et al. 2012); Supplementary Material 1:
Nucleolus Organizer Regions in Seals and Walrus; Supplementary Material 2: The Sex Chromosomes Features in
Pinniped Karyotypes.
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