1,104 research outputs found

    Native Texas Ornamental Bunchgrass Performance Under Water Restrictions

    Get PDF
    Growing human populations and increasing drought conditions compete with ornamental grassland landscapes for freshwater resources. With outdoor use as the largest consumer of municipal water, irrigation restrictions will likely be increasingly implemented, restricting ornamental municipal grasslands. Substituting irrigation-dependent exotic grasses with drought-adapted native bunchgrasses could help mitigate this problem. Greenhouse (GH) trials revealed exotic ornamental bunchgrasses declined faster than natives under progressive water stress, with natives performing best under moderate water with maximum water treatments decreasing aesthetic quality. There was wide variability among accessions, indicating promising genetic diversity from which to select drought resistance for ornamentals. Native grasses performed best in field trials with supplemental irrigation during warm-season growth and restricted irrigation during the cool season. In northcentral Texas, native little bluestem (LBS; Schizachyrium scoparium L.) accessions outperformed exotics in health and aesthetics across environments. Most response variables were species as well as accession dependent. Select LBS accessions are recommended for commercialization for municipal grasslands due to superior field performance under water restrictions. Replacing favored water-intensive exotic grasses with adapted native grasses could help reduce irrigation water use

    Reclaiming the political : emancipation and critique in security studies

    Get PDF
    The critical security studies literature has been marked by a shared commitment towards the politicization of security – that is, the analysis of its assumptions, implications and the practices through which it is (re)produced. In recent years, however, politicization has been accompanied by a tendency to conceive security as connected with a logic of exclusion, totalization and even violence. This has resulted in an imbalanced politicization that weakens critique. Seeking to tackle this situation, the present article engages with contributions that have advanced emancipatory versions of security. Starting with, but going beyond, the so-called Aberystwyth School of security studies, the argument reconsiders the meaning of security as emancipation by making the case for a systematic engagement with the notions of reality and power. This revised version of security as emancipation strengthens critique by addressing political dimensions that have been underplayed in the critical security literature

    Semliki Forest virus induced, immune mediated demyelination: the effect of irradiation

    Get PDF
    International audienceThe Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey (DES). The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 mag fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = -38.14° ± 0.08° (near side in the north) and a position angle for the line of nodes of θ0 = 129.51° ± 0.17°. We find that stars younger than ∼4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4 Gyr = 1.41 ± 0.01 kpc, while the younger population has R = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is {∼eq } 24^{+9}_{-6} times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fitting LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. Our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component

    Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography

    Get PDF
    The maintenance of stem cell pluripotency or sternness is crucial to embryonic development and differentiation. The mechanical or physical microenvironment of stem cells, which includes extracellular matrix stiffness and topography, regulates cell morphology and stemness. Although a growing body of evidence has shown the importance of these factors in stem cell differentiation, the impact of these biophysical or biomechanical regulators remains insufficiently characterized. In the present study, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities and three topographies to systematically test the morphology, proliferation, and sternness of mESCs. The independent or combined impact of the two factors on specific cell functions was analyzed. Cells are able to grow effectively on both polystyrene and polyacrylamide substrates in the absence of feeder cells. Substrate stiffness is predominant in preserving stemness by enhancing Oct-4 and Nanog expression on a soft polyacrylamide substrate. Topography is also a critical factor for manipulating sternness via the formation of a relatively flattened colony on a groove or pillar substrate and a spheroid colony on a hexagonal substrate. Although topography is less effective on soft substrates, it plays a role in retaining cell sternness on stiff, hexagonal or pillar-shaped substrates. mESCs also form, in a timely manner, a 3D structure on groove or hexagonal substrates. These results further the understanding of stem cell morphology and stemness in a microenvironment that mimics physiological conditions. (C) 2014 Elsevier Ltd. All rights reserved

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go

    Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model

    Get PDF
    Based on four cruises covering a seasonal cycle in 2009-2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100m of the water column in the study area ranged from similar to 200 to similar to 290 mmol m(-2) for N+N (nitrate plus nitrite), from similar to 13 to similar to 24 mmol m(-2) for soluble reactive phosphate and from similar to 210 to similar to 430 mmol m(-2) for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N+N inventory in spring and winter had a reduction of similar to 13 and similar to 30 %, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as N-m, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100m of the water column had a net consumption in both winter and spring but a net addition in fall.Based on four cruises covering a seasonal cycle in 2009-2011, we examined the impact of the Kuroshio intrusion, featured by extremely oligotrophic waters, on the nutrient inventory in the central northern South China Sea (NSCS). The nutrient inventory in the upper 100m of the water column in the study area ranged from similar to 200 to similar to 290 mmol m(-2) for N+N (nitrate plus nitrite), from similar to 13 to similar to 24 mmol m(-2) for soluble reactive phosphate and from similar to 210 to similar to 430 mmol m(-2) for silicic acid. The nutrient inventory showed a clear seasonal pattern with the highest value appearing in summer, while the N+N inventory in spring and winter had a reduction of similar to 13 and similar to 30 %, respectively, relative to that in summer. To quantify the extent of the Kuroshio intrusion, an isopycnal mixing model was adopted to derive the proportional contribution of water masses from the SCS proper and the Kuroshio along individual isopycnal surfaces. The derived mixing ratio along the isopycnal plane was then employed to predict the genuine gradients of nutrients under the assumption of no biogeochemical alteration. These predicted nutrient concentrations, denoted as N-m, are solely determined by water mass mixing. Results showed that the nutrient inventory in the upper 100m of the NSCS was overall negatively correlated to the Kuroshio water fraction, suggesting that the Kuroshio intrusion significantly influenced the nutrient distribution in the SCS and its seasonal variation. The difference between the observed nutrient concentrations and their corresponding Nm allowed us to further quantify the nutrient removal/addition associated with the biogeochemical processes on top of the water mass mixing. We revealed that the nutrients in the upper 100m of the water column had a net consumption in both winter and spring but a net addition in fall

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    <b>Background</b> Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.<p></p> <b>Methods and findings</b> The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.<p></p> <b>Conclusions</b> Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems

    Effect of four plant species on soil 15N-access and herbage yield in temporary agricultural grasslands

    Get PDF
    Positive plant diversity-productivity relationships have been reported for experimental semi-natural grasslands (Cardinale et al. 2006; Hector et al. 1999; Tilman et al. 1996) as well as temporary agricultural grasslands (Frankow-Lindberg et al. 2009; Kirwan et al. 2007; Nyfeler et al. 2009; Picasso et al. 2008). Generally, these relationships are explained, on the one hand, by niche differentiation and facilitation (Hector et al. 2002; Tilman et al. 2002) and, on the other hand, by greater probability of including a highly productive plant species in high diversity plots (Huston 1997). Both explanations accept that diversity is significant because species differ in characteristics, such as root architecture, nutrient acquisition and water use efficiency, to name a few, resulting in composition and diversity being important for improved productivity and resource use (Naeem et al. 1994; Tilman et al. 2002). Plant diversity is generally low in temporary agricultural grasslands grown for ruminant fodder production. Grass in pure stands is common, but requires high nitrogen (N) inputs. In terms of N input, two-species grass-legume mixtures are more sustainable than grass in pure stands and consequently dominate low N input grasslands (Crews and Peoples 2004; Nyfeler et al. 2009; Nyfeler et al. 2011). In temperate grasslands, N is often the limiting factor for productivity (Whitehead 1995). Plant available soil N is generally concentrated in the upper soil layers, but may leach to deeper layers, especially in grasslands that include legumes (Scherer-Lorenzen et al. 2003) and under conditions with surplus precipitation (Thorup-Kristensen 2006). To improve soil N use efficiency in temporary grasslands, we propose the addition of deep-rooting plant species to a mixture of perennial ryegrass and white clover, which are the most widespread forage plant species in temporary grasslands in a temperate climate (Moore 2003). Perennial ryegrass and white clover possess relatively shallow root systems (Kutschera and Lichtenegger 1982; Kutschera and Lichtenegger 1992) with effective rooting depths of <0.7 m on a silt loamy site (Pollock and Mead 2008). Grassland species, such as lucerne and chicory, grow their tap-roots into deep soil layers and exploit soil nutrients and water in soil layers that the commonly grown shallow-rooting grassland species cannot reach (Braun et al. 2010; Skinner 2008). Chicory grown as a catch crop after barley reduced the inorganic soil N down to 2.5 m depth during the growing season, while perennial ryegrass affected the inorganic soil N only down to 1 m depth (Thorup-Kristensen 2006). Further, on a Wakanui silt loam in New Zealand chicory extracted water down to 1.9 m and lucerne down to 2.3 m soil depth, which resulted in greater herbage yields compared with a perennial ryegrass-white clover mixture, especially for dryland plots (Brown et al. 2005). There is little information on both the ability of deep- and shallow-rooting grassland species to access soil N from different vertical soil layers and the relation of soil N-access and herbage yield in temporary agricultural grasslands. Therefore, the objective of the present work was to test the hypotheses 1) that a mixture comprising both shallow- and deep-rooting plant species has greater herbage yields than a shallow-rooting binary mixture and pure stands, 2) that deep-rooting plant species (chicory and lucerne) are superior in accessing soil N from 1.2 m soil depth compared with shallow-rooting plant species, 3) that shallow-rooting plant species (perennial ryegrass and white clover) are superior in accessing soil N from 0.4 m soil depth compared with deep-rooting plant species, 4) that a mixture of deep- and shallow-rooting plant species has greater access to soil N from three soil layers compared with a shallow-rooting two-species mixture and that 5) the leguminous grassland plants, lucerne and white clover, have a strong impact on grassland N acquisition, because of their ability to derive N from the soil and the atmosphere
    corecore