558 research outputs found

    Multiwalled carbon nanotube: Luttinger liquid or not?

    Get PDF
    We have measured IV-curves of multiwalled carbon nanotubes using end contacts. At low voltages, the tunneling conductance obeys non-Ohmic power law, which is predicted both by the Luttinger liquid and the environment-quantum-fluctuation theories. However, at higher voltages we observe a crossover to Ohm's law with a Coulomb-blockade offset, which agrees with the environment-quantum-fluctuation theory, but cannot be explained by the Luttinger-liquid theory. From the high-voltage tunneling conductance we determine the transmission line parameters of the nanotubes.Comment: RevTeX, 4 pages, 2 EPS-figures, submitted to Phys. Rev. Let

    Nanoelectronic thermometers optimised for sub-10 millikelvin operation

    Get PDF
    We report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. Above 7 mK the devices are in good thermal contact with the environment, well isolated from electrical noise, and not susceptible to self-heating. This is attributed to an optimised design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with a low-noise electronic measurement setup. Below 7 mK the electron temperature is seen to diverge from the ambient temperature. By immersing a Coulomb Blockade Thermometer in the 3He/4He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK.Comment: 11 pages, 4 figures. (Fixed fitted saturation T_e on p9

    “Superconductor-Insulator Transition” in a Single Josephson Junction

    Get PDF
    VI curves of resistively shunted single Josephson junctions with different capacitances and tunneling resistances are found to display a crossover between two types of VI curves: one without and another with a resistance bump (negative second derivative) at zero bias. The crossover corresponds to the dissipative phase transition (superconductor-insulator transition) at which macroscopic quantum tunneling delocalizes the Josephson phase and destroys superconductivity. Our measured phase diagram does not agree with the diagram predicted by the original theory, but does coincide with a theory that takes into account the accuracy of voltage measurements and thermal fluctuations.Peer reviewe

    Non-destructive controlled single-particle light scattering measurement

    Get PDF
    We present a set of light scattering data measured from a millimeter-sized extraterrestrial rock sample. The data were acquired by our novel scatterometer, which enables accurate multi-wavelength measure- ments of single-particle samples whose position and orientation are controlled by ultrasonic levitation. The measurements demonstrate a non-destructive approach to derive optical properties of small mineral samples. This enables research on valuable materials, such as those returned from space missions or rare meteorites.Peer reviewe

    Effect of quantum noise on Coulomb blockade in normal tunnel junctions at high voltages

    Get PDF
    We have investigated asymptotic behavior of normal tunnel junctions at voltages where even the best ohmic environments start to look like RC transmission lines. In the experiments, this is manifested by an exceedingly slow approach to the linear behavior above the Coulomb gap. As expected on the basis of the quantum theory taking into account interaction with the environmental modes, better fits are obtained using 1/sqrt{V}- than 1/V- dependence for the asymptote. These results agree with the horizon picture if the frequency-dependent phase velocity is employed instead of the speed of light in order to determine the extent of the surroundings seen by the junction.Comment: 9 pages, 4 figures, submitted to Phys. Rev.

    Temperature Dependence of Zero-Bias Resistances of a Single Resistance-Shunted Josephson Junction

    Full text link
    Zero-bias resistances of a single resistance-shunted Josephson junction are calculated as a function of the temperature by means of the path-integral Monte Carlo method in case a charging energy ECE_{\rm C} is comparable with a Josephson energy EJE_{\rm J}. The low-temperature behavior of the zero-bias resistance changes around α=RQ/RS=1\alpha=R_{\rm Q}/R_{\rm S}=1, where RSR_{\rm S} is a shunt resistance and RQ=h/(2e)2R_{\rm Q}=h/(2e)^2. The temperature dependence of the zero-bias resistance shows a power-law-like behavior whose exponent depends on EJ/ECE_{\rm J}/E_{\rm C}. These results are compared with the experiments on resistance-shunted Josephson junctions

    Characterization of a Be(p,xn) neutron source for fission yields measurements

    Full text link
    We report on measurements performed at The Svedberg Laboratory (TSL) to characterize a proton-neutron converter for independent fission yield studies at the IGISOL-JYFLTRAP facility (Jyv\"askyl\"a, Finland). A 30 MeV proton beam impinged on a 5 mm water-cooled Beryllium target. Two independent experimental techniques have been used to measure the neutron spectrum: a Time of Flight (TOF) system used to estimate the high-energy contribution, and a Bonner Sphere Spectrometer able to provide precise results from thermal energies up to 20 MeV. An overlap between the energy regions covered by the two systems will permit a cross-check of the results from the different techniques. In this paper, the measurement and analysis techniques will be presented together with some preliminary results.Comment: 3 pages, 3 figures, also submitted as proceedings of the International Conference on Nuclear Data for Science and Technology 201

    Quantum Effects in Small-Capacitance Single Josephson Junctions

    Full text link
    We have measured the current-voltage (I-V) characteristics of small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6 K), where the strength of the coupling between the single junction and the electromagnetic environment was controlled with one-dimensional arrays of dc SQUIDs. The single-junction I-V curve is sensitive to the impedance of the environment, which can be tuned IN SITU. We have observed Coulomb blockade of Cooper-pair tunneling and even a region of negative differential resistance, when the zero-bias resistance R_0' of the SQUID arrays is much higher than the quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance is evidence of coherent single-Cooper-pair tunneling within the theory of current-biased single Josephson junctions. Based on the theory, we have calculated the I-V curves numerically in order to compare with the experimental ones at R_0' >> R_K. The numerical calculation agrees with the experiments qualitatively. We also discuss the R_0' dependence of the single-Josephson-junction I-V curve in terms of the superconductor-insulator transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio
    corecore