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Effect of quantum noise on Coulomb blockade in normal tunnel junctions at high voltages

J. S. Penttila¨, Ü. Parts, P. J. Hakonen, and M. A. Paalanen
Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Espoo, Finland

E. B. Sonin
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 20 October 1999!

We have investigated the asymptotic behavior of normal tunnel junctions at voltages where even the best
Ohmic environments start to look likeRC transmission lines. In the experiments, this is manifested by an
exceedingly slow approach to the linear behavior above the Coulomb gap. As expected on the basis of the
quantum theory taking into account interaction with the environmental modes, better fits are obtained using
1/AV than 1/V dependence for the asymptote. These results agree with the horizon picture if the frequency-
dependent phase velocity is employed instead of the speed of light in order to determine the extent of the
surroundings seen by the junction.

I. INTRODUCTION

Coulomb blockade in a single normal tunnel junction is
strongly affected by the environment if the real part of im-
pedance is less than the quantum resistanceRK5h/e2

'26 kV. However, a quite general sum rule requires that, at
high voltages, theIV curve is of the formV5IR1e/2C
whereC is the geometric capacitance of the tunnel junction.1

The environment strongly influences the way this asymptote
is approached. Experiments on typical samples with low re-
sistance leads exhibit asymptotic 1/V tails that can be ex-
plained well using either the quantum theory of
environment1 or the horizon model.2,3

In this paper we analyze our experimental results onIV
curves for a variety of single small isolated tunnel junctions,
shunted and unshunted, with different values of capacitance
C and tunneling resistanceRT . Our attention is concentrated
especially on the high-voltage part of theIV curves obtained
for samples with highly resistive Cr leads. At high frequen-
cies that are most important for the high-voltage asymptotics
such leads behave as lossyRC lines. Experimental results
are discussed and interpreted in terms of the quantum theory
of environment, which predicts that the high-voltage asymp-
tote is approached as 1/AV, i.e., much slower than 1/V tails
revealed for a purely real impedance. Indeed, we find
asymptotic 1/AV tails experimentally in the range of voltages
1–10 mV. An important feature of our experimental condi-
tions is that the junction resistance for some samples is not
large compared withRK and the strong tunneling corrections
have to be taken into account.

We start this paper with a theoretical overview~Sec. II!
that concentrates on predictions of the quantum theory of
electromagnetic environment1 for the high-voltage asymptot-
ics of IV curves. This theory accounts for environmental
effects by a phase-dependent factor in the tunnel Hamil-
tonian that describes the tunneling rate of electrons through
the junction. Because of the Johnson-Nyquist noise in the
electric circuit, the phase fluctuates and this affects the tun-
neling rate. Due to an exchange of energy between the elec-
tron and environmental modes, the delta functiond(E) in
energy must be replaced by a broader distribution function

P(E) in the expression for the tunneling rate. Therefore, this
is calledP(E) theory.3 We prefer the termphase-correlation
theory, introduced in Ref. 4, emphasizing the important role
of phase fluctuations and phase memory in the theory. An
alternativevoltage-fluctuationtheory suggested in Ref. 4, is
also discussed. The latter, in contrast to the phase-correlation
theory, predicts an exponential tail for the high-voltage as-
ymptotics.

The effect of environment is less pronounced in the high-
voltage than in the low-voltage part of theIV curve, and
therefore it is more difficult for scrutiny. But we show in the
theoretical overview that the high-voltage asymptotics is
governed by onlythe quantum partof the Johnson-Nyquist
noise, and therefore is quite important for a reliable compari-
son with the quantum theory. The high-voltage asymptotic is
also convenient for studying strong tunneling corrections that
are important at our experimental conditions. In Sec. II we
argue that a proper account of strong tunneling corrections is
to include the junction resistance as a lumped element in an
effective electric circuit used for calculation of the Johnson-
Nyquist noise. This view is proven by comparing this ap-
proach with a more elaborate theoretical analysis.5,6

The experiment and its comparison with the theoretical
predictions are described in Sec. III. We fit the experimental
high-voltage tails by a combination of 1/V and 1/AV tails
with their amplitudes as fitting parameters, and compare the
outcome with the values calculated for our effective electric
circuit. Note that experimentally it is rather hard to distin-
guish between different power-law dependences on voltage
unless separately determined parameters are employed in re-
stricting the fitted formulas. But there is a clear difference
between the power-law and exponential tails, and our fitting
is in favor of the power-law tails predicted by the phase-
correlation theory. The paper is concluded by a discussion
~Sec. IV!.

II. THE IV CURVE ASYMPTOTICS

A. The phase-correlation theory

The IV curve is given by

I 5e@G1~V!2G2~V!#, ~1!
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where the forward tunneling probability reads1

G1~V!5
1

e2RT
E

2`

`

dEE
2`

`

dE8 f ~E!

3@12 f ~E8!#E
2`

` dt

2p\

3expF i t

\
~E2E81eV!G^eiw(t)e2 iw(0)&, ~2!

and the backward tunneling rateG2(V)5G1(2V). Here
f (E) is the Fermi distribution, and w(t)
5(e/\)*2`

t dt* dV(t* ) is the fluctuation of the phase differ-
ence due to fluctuating voltagedV across the junction, which
is treated as a quantum-mechanical operator. The averaging
^•••& is performed over possible states of quantum environ-
ment, i.e., an ensemble of modes in an electric circuit that the
junction is embedded in. If the phase does not fluctuate, the
integral*dt in Eq. ~2! yields the energy delta functiond(E
2E81eV), and Eq.~2! reduces to the usual expression for
an Ohmic tunnel junction. But taking into account the phase
fluctuations, Eq.~2! yields after some algebra@see Eq.~56!
in Ref. 1#

G1~V!5
1

e2RT
E

2`

`

dE
E

12expS 2
E

kBTD P~eV2E!. ~3!

Here

P~E!5
1

2p\E2`

`

dt expFJ~ t !1
iEt

\ G , ~4!

and

J~ t !5^@w~ t !2w~0!#w~0!&

52E
2`

` dv

v

ReZ~v!

RK

e2 ivt21

12e2b\v
~5!

is the phase-correlation function whereb51/kBT. Since
ReZ(v) is an even function ofv, the imaginary part ofJ(t)
does not depend on temperature:

ImJ~ t !52E
2`

` dv

v

ReZ~v!

RK
sin~vt !. ~6!

Using the time-domain formulation7,8 one can rewrite Eq.
~3!:

G1~V!5
1

2p\e2RT
E

2`

`

dtg~ t !expFJ~ t !1
ieVt

\ G , ~7!

where

g~ t !5E
2`

`

dE
E

12expS 2
E

kBTD expS 2
iEt

\ D

5 ip\2
d

dt
d~ t !2

p2

b2

1

sinh2~pt/\b!
. ~8!

Then using the sum rulesJ(0)50 andiJ8(0)5e2/2C\1, the
current becomes

I 5
1

RT
FV2

e

2C
1

p

e\b2E
2`

` dt

sinh2~pt/\b!
Im$eJ(t)%sin

eVt

\ G .

~9!

The effect of the environment is given by the last term. The
second derivative of the current at highV@p/eb
5pkBT/e becomes

d2I

dV2 52
e

p\RT
E

2`

`

dt Im$eJ(t)%sin
eVt

\
. ~10!

The asymptotic behavior atV→` is determined by the
short-time expansion of the correlation functionJ(t) where it
is small. Using Eq.~6! we obtain

d2I

dV2 52
e

p\RT
E

2`

`

dt Im$J~ t !%sin
eVt

\

5
e

p\RT
E

2`

`

dtE
2`

` dv

v

ReZ~v!

RK
sin~vt !sin

eVt

\

5
2

RTRK

ReZ~eV/\!

V
. ~11!

The total impedance of the circuit may be presented as
Z21(v)5Y0(v)1 ivC, where the admittanceY0(v) refers
to the whole circuit except for the capacitive channel of the
tunnel junction. At high frequencies~voltages! one has

d2I

dV2 '
e2RK

2p2C2RT

ReY0~eV/\!

V3
. ~12!

Now integrating twice fromV to ` we obtain theIV
curve

I 5
1

RT
FV2

e

2C
1Vt~V!G , ~13!

where the ‘‘tail’’ voltage is

Vt5
e2RK

2p2C2EV

`

dV1E
V1

`

dV2

ReY0~eV2 /\!

V2
3

. ~14!

Alternatively, the effect of the tail can be presented as a
voltage-dependent correction to the junction capacitance:

I 5
1

RT
S V2

e

2C̃~V!
D , ~15!

where the voltage-dependent capacitanceC̃ is

C̃~V!5CS 11
C

e
Vt~V! D . ~16!

In the Ohmic case,Y05R21 and
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Vt5
RK

R S e

2pCD 2 1

V
. ~17!

Then Eq.~13! agrees with Eq.~115! of Ref. 1.
Thus the IV curve at high voltages scans the high-

frequency impedance and does not depend on temperature.
This means that only the quantum noise of the environment
affects the high-voltage behavior, and this is manifested by
the proportionality of high-voltage tails to the quantum resis-
tance RK . But one must remember that the derived
asymptotic behavior starts at voltagesV higher than
pkBT/e. This could make the observation of asymptotic tails
impossible at very high temperatures because of their very
small contribution, which could be masked by nonlinear cor-
rections to the junction conductance at very high voltages.

B. Alternative theory of the environment effect:
Voltage-fluctuation theory

There is another approach that takes into account environ-
mental modes on the tunneling rate. One uses the expression
for the tunneling probability obtained for astatic voltage at
the junction assuming that this voltage is a random quantity
described by the Gaussian distribution arising from the
Johnson-Nyquist noise. Let us call it the voltage-fluctuation
theory. Initiated by Clelandet al.4 such an approach was
considered as a heuristic model, in contrast to ‘‘the more
accurate’’ phase-correlation model. We argue that the two
approaches are not at all equivalent when compared with
each other. They areessentially differentin the physical pic-
ture of the phenomenon. The phase-correlation theory as-
sumes that phase fluctuations affect the tunneling probability
via a phase-dependent factor in the tunneling Hamiltonian.
This phenomenon represents an example of a ‘‘phase-
memory effect.’’ In contrast, the voltage-fluctuation theory
assumes that the tunneling probability depends only on the
voltage at the present moment, without any memory effect.
But the voltage fluctuates due to the Johnson-Nyquist noise
in the circuit and this affects the current through the junction.

In spite of completely different starting assumptions, the
results of the voltage-fluctuation and the phase-correlation
theories agree on certain aspects. In particular, both the theo-
ries demonstrate that quantum fluctuations of the environ-
ment become important when the circuit resistanceR be-
comes of the order of the quantum resistanceRK . However,
there is an essential difference in predictions for the follow-
ing effect: At low voltages when the Coulomb effects are the
most pronounced, the voltage-fluctuation theory predicts an
Ohmic behavior for zero-bias anomaly, but with an exponen-
tially large resistance value compared with the nominal tun-
neling resistanceRT . In contrast, the phase-correlation
theory1 gives a nonanalyticIV curve with a nonlinear power
law. At high voltages the voltage-fluctuation theory predicts
an exponentially decreasing quantum-fluctuation correction
to the IV curve, against a power-law decrease in the phase-
correlation theory as derived above.

These two theories were compared in experiments by Far-
hangfaret al.9 at low voltages, and this comparison was in
favor of the phase-correlation theory. The present paper ad-
dresses theIV curve at high voltages and we shall discuss
predictions of the voltage-fluctuation theory for the asymp-

totics of the IV curve. Forward and backward tunneling
probabilities at zero temperature are

G6~V!5
1

eREe/2C7V

` S 6V1dV2
e

2CD p~dV!ddV.

~18!

Here p(dV) is the voltage-fluctuation probability distribu-
tion, which we assume to be Gaussian,

p~dV!5
1

A2pDV
expS 2

dV2

2DV2D , ~19!

and DV5A^dV2& is the standard deviation of this distribu-
tion. Then after integration in the limitV@e/2C,DV (G2 is
insignificant in this limit!:

G15
1

eRH V2
e

2C
1

DV3

A2pV2
expF2

V2

2DV2G J . ~20!

This yields the exponential asymptotic voltage tail

Vt5
DV3

A2pV2
expS 2

V2

2DV2D . ~21!

Similar to phase fluctuations, voltage fluctuations are de-
termined by the Johnson-Nyquist noise in the circuit and

DV25
\2

e2
^ẇ~0!2&5

\

pE2`

`

vdv
ReZ~v!

12e2b\v
. ~22!

Thus, in contrast to the phase-correlation theory, the high-
voltage asymptote is affected not by a single noise mode
with frequencyv5eV/\, but by the whole noise spectrum.
As a result, the voltage tail must decrease exponentially,
which is not confirmed in our experiments~see Sec. III!. In
the rest of this section we restrict ourselves to a discussion of
the phase-correlation theory.

C. Strong tunneling effects

Originally, the phase-correlation theory was developed
for the weak tunneling regime, where the junction resistance
RT is large (@RK) and its contribution to the equilibrium
noise in the circuit is negligible. In our experimentRT;RK
and we must include also the strong tunneling effects. Usu-
ally tunneling is defined as strong when the junction resis-
tance becomes of the order or smaller thanRK . But in fact
one must take into account strong tunneling effects even if
RT becomes comparable with the circuit resistance. Let us
consider the case whenRT is the smallest of all parallel
resistors in the circuit. ThenY0'1/RT and

I 5
1

RT
FV2

e

2C S 12
RK

RT

e

2p2C

1

VD G . ~23!

This asymptotic expression for theIV curve looks like an
expansion in the parameterae/CV wherea5RK /RT char-
acterizes dissipation. The same parameter determined strong
tunneling effects analyzed by Odintsov5 ~see also the expres-
sion for theIV curve and discussion in Sec. 5.3.4 of Ref. 10!.
Expanding the expression for theIV curve of Odintsov in
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ae/CV, the first terms of the expansion exactly reproduce
Eq. ~23! derived as an asymptotic expression for high volt-
ages. The results by Odintsov5 have also been confirmed by
a more general analysis of strong tunneling by Golubev and
Zaikin6 using a path-integral technique.

Thus, at least at high voltages, strong tunneling effects
can be taken into account simply by including the tunnel
resistanceRT into the effective electric circuit. This means
thatRT contributes to the equilibrium Johnson-Nyquist noise
on equal terms with other dissipative elements of the circuit.
The same approach was used by Joyez and Esteve8 in the
analysis of the low-voltage part of theIV curve, but instead
of using RT as an element of the electric circuit to account
for the noise from the junction, they used the differential
resistance at zero-voltage bias, which may be much larger
thanRT .

D. Circuit elements as transmission lines

At high frequencies resistors in the circuit cease to be
lumped elements and should be considered as transmission
lines with distributed resistance, capacitance, and inductance.
The admittance of a double transmission line shown in Fig. 1
~drawn without inductive elements! is

YL~v!5
1

2
A ivCR

R2 ivL
cotAivCR~R2 ivL !, ~24!

whereR,L, andCR are the total resistance, inductance, and
capacitance of an individual transmission line. At low fre-
quency (v!1/RCR ,R/L), the admittance becomes purely
Ohmic, i.e., it behaves as a lumped Ohmic resistor:YL
'1/2R.

For a low-resistance transmission line withR!AL/CR,
the resistance may be neglected, but in the high-frequency
limit the double transmission line behaves, nevertheless, as
an Ohmic resistor with a real impedance 2AL/CR ~the en-
ergy is lost via radiation along an infinite transmission line!.
Then the voltage tail is}1/V as for a lumped resistor:

Vt5
RK

2
ACR

L S e

2pCD 21

V
. ~25!

But for the high-resistance line withR@AL/CR one may
neglect inductance, and the real part of the admittance in the
high-frequency limit becomes

ReYL~v!'
1

2
ReA2 ivCR

R
. ~26!

Then the voltage tail decreases slower, as 1/AV:

Vt5
a1/2

V1/2
,

a1/25
1

3p3/2
ARKCR

RC S e

CD 3/2

. ~27!

But irrespective of the magnitude of the dissipative compo-
nent, at very high frequencyv@R/L @high voltage V
@(\/e)R/L] the ~double! transmission line again becomes
Ohmic with the real impedanceZL'2AL/CR, which is
much smaller thanR if the line is long ~sinceR is propor-
tional to the line length, butL/CR is not!. However, ifR is
large enough, this happens for voltages too high to be rel-
evant in the experiments. Altogether, both high-voltage tails,
Eqs. ~25! and ~27!, become valid when the ‘‘uncertainty’’
time tV5\/eV introduced by Nazarov11 becomes less than
the relaxation timeRCR of the circuit.

E. Stray capacitance and the horizon model

One way to describe the high-frequency effect of the en-
vironment is to use the so-called ‘‘horizon model.’’3,12 It
represents the effect of the environment as due to stray ca-
pacitance of leads described by transmission lines. The rel-
evant stray capacitance originates from the length of the
transmission line over which an electromagnetic signal from
the junction can travel during the uncertainty timetV
5\/eV. This length is called the ‘‘horizon’’ lengthvphtV .
Here vph is the velocity of the signal propagation. Indeed,
the effective voltage-dependent capacitance incorporating
the effect of the voltage tail@see Eqs.~15! and ~16!# can be
presented as

C̃5C1
C2

e
Vt~V!5C1cRvphtV , ~28!

wherecR5CR /L is the capacitance per unit length andL is
the length of the transmission line. In the past3,12 the horizon
model was used for lossless~low-resistance! transmission
lines when

C̃5C1
1

2p2ACR

L

h

eV
~29!

andvph51/AcRl is of the order of the light velocity~herel
5L/L is the inductance per unit length!. But the model
works also for lossy~high-resistance! lines when

FIG. 1. ~a! High-frequency model for resistive measurement
leads. Microstrip leads are viewed as transmission lines with the
total capacitanceCR and resistanceR per each.~b! Measurement
setup.

PRB 61 10 893EFFECT OF QUANTUM NOISE ON COULOMB BLOCKADE . . .



C̃5C1
4

3p3/2
ARKCR

RC
~eC!1/2

1

V1/2

5C1
4

3p3/2
AhCR

ReV
. ~30!

Comparing it with Eq.~28! one sees thatvph;Av/cRr
;AeV /\cRr , and again on the order of the phase velocity
along the transmission line~herer 5R/L), but for the lossy
line this velocity is frequency~voltage! dependent and much
less than the speed of light. Thus, the horizon picture pre-
sents a good qualitative picture of the effect of the environ-
ment on the high-voltage asymptotics.

Originally the horizon model was introduced by Bu¨ttiker
and Landauer,13 who assumed the characteristic time to be
the traversal time of tunneling, which is extremely small
~about 10215 sec). In fact, Bu¨ttiker and Landauer13 consid-
ered the process of tunneling itself, which indeed can be
affected by the circuit only on such short time scales. In the
phase-correlation theory1 the circuit noise influences the
phase factor in the tunneling Hamiltonian~i.e., the phases of
the quantum states on both sides of the junction!, but not the
tunneling amplitude itself that is characterized by constant
junction conductance 1/RT . This influence is possible over a
distance, which is the horizon length determined by the un-
certainty time\/eV.

III. EXPERIMENT

A. Description of samples

Our sample consists of an aluminum tunnel junction~area
1503150 nm2), shunted or unshunted, connected to four
measurement leads via thin film Cr resistors (25mm long!
that are located within 3mm from the junction~see inset of
Fig. 2!. The circuits were fabricated using electron beam
lithography and triple-angle evaporation on top of an oxi-
dized silicon substrate (SiO2 thickness;100 nm). The tun-
nel barriers were formed by oxidizing the bottom aluminum
electrode in O2 at 0.1 mbar for 5 min. The Cr resistors and
shunt ~10–15-nm thick, 100-nm wide! were evaporated at
right angle of incidence. An accurate dosage of resistor wires
ensured that the Al replicas were evaporated on the side of
the resist and thus removed during lift off. The shunt resis-
tancesRs , made of a 3 –6-mm section of Cr, varied between
4 and 22 kV; this value was deduced using the length of the
shunt and the measured resistivityr of the Cr sections in the
leads. In order to compare the highly resistive Cr samples
with those in low-impedance environment, we have fabri-
cated a reference junction consisting of thick Al leads. See
Table I for a description of samples with different environ-
ments.

On the dilution refrigerator, the samples were mounted
inside a tight copper enclosure and the measurement leads
were filtered using 0.5 m of Thermocoax cable.

B. Effective electric circuit and the fitting formula

The elements of the effective electric circuit in the experi-
ment are the tunnel junction itself, which is a lumped ele-
ment with resistanceRT and capacitanceC, four leads with
resistanceR and stray capacitanceCR each, and shunt resis-
tanceRs @see Fig. 1~b!#. An estimation shows that for a volt-
age interval studied by us both, the leads and the shunt are in
the high-voltage regime where they must be considered as
transmission lines: lossy lines for a shunt and leads made
from Cr that produce the asymptotic square-root law (1/AV
tails!, while lossless lines for Al leads contribute to the cir-
cuit noise as pure Ohmic elements~the 1/V tail!. Thus, both
1/V and 1/AV tails are present simultaneously in our fitting
in a high-voltage regime (V.kBT/e,e/C) which is based on
the formula

I 5
V

Rs
1

1

RT
S V2

e

2C
1

A1

V
1

A1/2

AV
D 1gV3. ~31!

By introducing a cubic termgV3 into the fit we take into
account the nonlinear background at large voltages. Even at
large voltages (;10 mV) the strength of the cubic back-
ground does not exceed the total contribution from the

FIG. 2. Reduced ‘‘excess’’ currentI e vs voltageV for sample 3
with tunneling resistanceRT511.1 kV and a resistive 0.1310
2mm Cr shunt (Rs522.4 kV). Solid line illustrates fit using lossy
RC transmission line formulas Eq.~34!. Inset shows the ratio be-
tween two tail contributions arising from tunnel junction and trans-
mission line.

TABLE I. Measured shunted junctions. The value ofRs is estimated from the known wire resistivityr.

Sample Rs(kV) Description of environment

1 ` Cr leads only,r 54 kV/mm
2 ` Al leads only
3 22.4 Cr shunt/leads,r 54 kV/mm
4 4.2 Cr shunt/leads,r 51.5 kV/mm
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power-law tails. This makes it possible to resolve the power-
law dependence of the tail. In our measurement scheme, a
small ac excitation can be added to bias current sweep to
directly measure the differential conductancedI/dV. The fit-
tedg agrees with the parabolic background in the differential
conductance measurements.

The values of parametersA1 andA1/2 expected from the
theory are~i! unshunted junction with low impedance Al
leads

A15RKS e

2pCD 2S 1

RT
1ACR

L D ,

A1/250; ~32!

~ii ! unshunted junction with resistive Cr leads

A15
RK

RT
S e

2pCD 2

,

A1/252a1/2; ~33!

and ~iii ! shunted junction with resistive Cr leads

A15
RK

RT
S e

2pCD 2

,

A1/253a1/2. ~34!

The factors 2 and 3 in Eqs.~33! and~34! appear because
four leads are equivalent to two double transmission lines
shown in Fig. 1. Thus the total number of double transmis-
sion lines is 2 and 3 for the unshunted and the shunted case,
respectively. The shunt is considered as a two separate sec-
tions each with resistanceRs/2. The shunt resistanceRs is
known whereasRT and the capacitanceC as well as the
parameterA1 or A1/2 are fitted to theIV curve. In the case of
the lossless Al line~i! the parameterA1 is fitted freely since
it depends not only onRT , but also on the admittance
ACR /L. In the case of the Cr leads~ii !, ~iii ! A1 is fixed by
RT andC and the parameterA1/2 is fitted.

In the fabrication process the parameters~electron dose!
are equal both for the shunt and the leads. This means that
the capacitance and resistance per unit length are equal for
Cr shunts and leads. The capacitance per unit length may be
estimated from that of a prolate ellipsoid:14

cR54pe0ee f f

A12~b/a!2

ln@a/b1A~a/b!221#
, ~35!

wherea and b are the larger and smaller radii of the ellip-
soid, respectively. These are related to the lengthl, thickness
t, and widthw of the Cr lead throughb;Atw;30 nm, and
a; l;10 mm. For our silicon substrateee f f'6. Using these
values we getcR5100 aF/mm for our typical Cr environ-
ment. Note that the capacitance per unit length given by Eq.
~35! depends weakly on the length of the line. The fit results
are compared to theoretical estimates in Table II. Using the
estimated capacitancecR5100 aF/mm and the measured re-
sistivity 4 kV/mm, one obtains for the attenuation coeffi-
cient AvrcR/2;0.57mm21 at 1 mV(v51.6310121/s).
Hence, even though our Cr resistors are rather short, they can
be viewed practically as infinite.

The Al leads must be characterized by the microstrip im-
pedance

Al /cR5
Z0

2pAee f f

ln~8h/w![Z0
e f f , ~36!

where Z0 is the free-space impedance of 377V,h
;600 mm is the distance from the ground plane, andw
;200 nm is the width of the strip. This yields an impedance
of 260 V corresponding to capacitance per unit length of
30 aF/mm.

C. Experimental results

For presentation, it is convenient to subtract off the linear
part I 5V/Rtot with Rtot

215RT
211Rs

21 . Thus we can plot the
‘‘excess’’ current

I e5V/Rtot2I 1gV35
1

RT
S e

2C
2

A1

V
2

A1/2

AV
D ~37!

as a function of voltageV.kBT/e.
Figure 2 shows an example of anI e vs V curve measured

on a junction withr 54 kV/mm Cr leads~sample 3!. The
best fit is obtained with the lossyRC-line formula of Eq.
~34! with 1/AV tail. This yieldscR5210 aF/mm for the spe-
cific capacitance of the Cr leads, deviating by a factor of 2
from the estimated value of 100 aF/mm of Eq. ~35!. The
results on 1/AV tails were found to be independent of tem-

TABLE II. Fit results. RT and C are fitted to the data. ParametersARKCR /RC and RKACR /L are
calculated from the fitted parametersA1/2 andA1, respectively. These are compared with theoretical estimates
~see text!.

Sample RT (kV) C (fF) ARKCR /RC
Fit Theory

1 4.3 1.1 1.11 0.77
3 11.1 1.0 1.16 0.80
4 18.4 0.1 3.84 4.15

Sample RT(kV) C(fF) RKACR /L
Fit RK /Z0

e f f

2 76.0 0.7 45.3 99
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perature in the range 0.1–1 K. This is in agreement with
theory ~see Sec. II A!, according to which the tails depend
only on the quantum part of the Johnson-Nyquist noise.

Figure 3 shows anI e vs V curve of unshunted sample 2
with thick aluminum leads. As expected, the lossless trans-
mission line formula ~32! fits with impedanceAL/CR
'570V. This number agrees with Wahlgrenet al.3 who cal-
culatedRenv5440V from the low-voltage data of similar
unshunted single-tunnel junction.

The ratio between the tailsA1 /V andA1/2/AV is plotted
in the inset of Fig. 2. Even if the magnitudeA1/2/AV is
always larger thanA1 /V, their relative magnitude depends
on the tunnel resistanceRT . In the strong tunneling regime
RT,RK ,A1 /V becomes more dominant than in the samples
with larger RT . This means that one must take the strong
tunneling effect into account when investigating the high-
voltage tails, and for this it is sufficient to include the Ohmic
tunneling resistanceRT into the effective circuit for calcula-
tion of the Johnson-Nyquist noise.

Figure 4 shows a fit using voltage-fluctuation theory Eq.
~21!. As well as in the other fits, a nonlinear backgroundgV3

was needed in the fitting. However, even the best fit yields a
magnitude for the exponential tail that is orders of magnitude
smaller than the cubic background. This is evidence against
the voltage-fluctuation model.

Table II summarizes the fit results by showing the fitted
RT , C, and the parameterARKCR /RC proportional to the
fitting parameterA1/2. The theoretical value is obtained from
the calculated value of capacitance per unit length Eq.~35!.
The reference sample with lossless Al leads is characterized
by the dimensionless impedanceRKACR /L comparable to
RK /Z0

e f f .

IV. CONCLUDING DISCUSSION

We have studied experimentally high-voltage asymptotics
of the IV curves for small normal tunnel junctions and de-
tected power-law voltage tails of theIV curve when ap-
proaching the linear lawV5IR1e/2C. Our data are in a

good agreement with theoretical predictions of the quantum
theory of environment~the phase-correlation theory!. De-
spite some numerical-factor discrepancy for high-resistance
Cr leads, which may be ascribed to inaccuracy of our effec-
tive circuit, the voltage tail grows with increasing lead ad-
mittance as predicted by the quantum theory.

Voltage tails of the form 1/V, typical for low-resistance
leads, were experimentally studied and discussed by Wahl-
gren et al. within the horizon picture.3 We have detected
slower voltage tails 1/AV using high-resistance chromium
leads. We have shown that the horizon model provides a
good qualitative picture also for this type of environment,
but only if one takes into account that the high-resistance
leads behave as lossy transmission lines in which the elec-
tromagnetic signal travels with a frequency-dependent veloc-
ity that is much less than the velocity of light.

The effect of the environment is in fact a result of
Johnson-Nyquist noise in the electric circuit. It is important
that the power-law tails at high voltages are connected only
with the quantum part of Johnson-Nyquist noise. Note that in
order to avoid thermal noise when studying the low-voltage
part of theIV curve, the conditionkBT!e2/C must be sat-
isfied. For the high-voltage tails the condition may be much
weaker, viz.,kBT!eV/p, which is well satisfied in our ex-
perimental studies. Thus, detection of these tails in a good
agreement with theory is a rather unique verification of quan-
tum zero fluctuations in macroscopic systems.

Our experimental conditions included the case of strong
tunneling when the junction resistanceRT was less than the
quantum resistanceRK . The strong-tunneling corrections to
the environmental modes at high voltages can be simply in-
corporated by including the junction resistanceRT into the
effective electric circuit for calculation of the quantum noise.
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FIG. 4. Fit to sample 3 withRs522.4 kV using voltage-
fluctuation theory. The background cubic nonlinearity used in the
fitting formula was orders of magnitude larger than the exponential
tail of Eq. ~21!.

FIG. 3. ‘‘Excess’’ current vs voltage for an unshunted full Al
sample with tunneling resistanceRT576.0 kV. Fit using lossless
transmission line formulas Eq.~32!.

10 896 PRB 61PENTTILÄ, PARTS, HAKONEN, PAALANEN, AND SONIN



1G.-L. Ingold and Yu.V. Nazarov, inSingle Charge Tunneling,
edited by H. Grabert and M. H. Devoret~Plenum Press, New
York, 1992!, p. 48.

2L.J. Geerligs, V.F. Anderegg, C.A. van der Jeugd, J. Romijn, and
J.E. Mooij, Europhys. Lett.10, 79 ~1989!.

3P. Wahlgren, P. Delsing, and D.B. Haviland, Phys. Rev. B52,
R2293 ~1995!; P. Wahlgren, P. Delsing, T. Claeson, and D.B.
Haviland, ibid. 57, 2375~1998!.

4A.N. Cleland, J.M. Schmidt, and J. Clarke, Phys. Rev. B45, 2950
~1992!.
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