research

Temperature Dependence of Zero-Bias Resistances of a Single Resistance-Shunted Josephson Junction

Abstract

Zero-bias resistances of a single resistance-shunted Josephson junction are calculated as a function of the temperature by means of the path-integral Monte Carlo method in case a charging energy ECE_{\rm C} is comparable with a Josephson energy EJE_{\rm J}. The low-temperature behavior of the zero-bias resistance changes around α=RQ/RS=1\alpha=R_{\rm Q}/R_{\rm S}=1, where RSR_{\rm S} is a shunt resistance and RQ=h/(2e)2R_{\rm Q}=h/(2e)^2. The temperature dependence of the zero-bias resistance shows a power-law-like behavior whose exponent depends on EJ/ECE_{\rm J}/E_{\rm C}. These results are compared with the experiments on resistance-shunted Josephson junctions

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 02/01/2020