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Multiwalled carbon nanotube: Luttinger versus Fermi liquid
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We have measuredIV curves of multiwalled carbon nanotubes using end contacts. At low voltages, the
tunneling conductance obeys non-Ohmic power law, which is predicted both by the Luttinger liquid and the
environment-quantum-fluctuation theories. However, at higher voltages we observe a crossover to Ohm’s law
with a Coulomb-blockade offset, which agrees with the environment-quantum-fluctuation theory, but cannot be
explained by the Luttinger-liquid theory. From the high-voltage tunneling conductance we determine the
transmission line parameters of the nanotubes.

DOI: 10.1103/PhysRevB.64.195412 PACS number~s!: 74.50.1r, 73.23.Hk, 73.40.Gk

Metallic carbon nanotubes are considered as outstanding
realizations of strongly interacting, one-dimensional~1D!
electron systems, i.e., Luttinger liquids~LL’s !.1–3A Luttinger
liquid is a paramagnetic metal without Fermi-liquid quasi-
particles. Its basic charged excitations are plasmons which
can be viewed as propagating electrodynamic modes in a
similar fashion as in any regular transmission line. Experi-
mental evidence for LL behavior has recently been observed
in single-walled carbon nanotubes4 as well as in multiwalled
tubes ~MWNT’s!.5 The transmission line analogy, in turn,
facilitates the connection of LL theory to environment-
quantum-fluctuation~EQF! theory.6,7 This theory has been
successful in explaining the Coulomb blockade in normal
tunnel junctions.7 Unlike the LL model, EQF theory incor-
porates various factors, which makes it much more amenable
to detailed experimental comparison, especially in the case
of resistive transmission lines.

In this paper we present experimental results on theIV
curves for four metallic, arc-discharge-grown MWNT’s. We
analyze our results using both the EQF analysis6,7 and the
standard LL formulas.8,9 At small voltages both of these ap-
proaches predict forIV curves a power lawI}Va11, which
is also supported by experiments yieldinga1151.2360.1.
At large voltages we find that only EQF theory is applicable
and obtain for the high-frequency impedanceZ
51.3–7.7 kV. From the values ofa andZ we can indepen-
dently determine the kinetic inductance of the nanotubes and
obtain consistent values ofl kin50.1– 4.2 nH/mm.

A multiwalled nanotube consists of several concentric
nanotubes. About one-third of the tubes are expected to be
metallic with quite large interlayer capacitance. According to
our analysis, the large capacitance connects the inductive as
well the resistive components of separate tubes in parallel.
All metallic tubes take part in the conduction at high fre-
quencies, in contrast to the Aharonov-Bohm experiments of
Ref. 5 where only the outermost layer contributed to the dc
resistance. The total electron densityn of a MWNT is pro-
portional toM, the number of metallic layers, and in each
channel the Fermi velocity of 1D electron gas isvF
5p\n/4Mm* 583105 m/s. Herem* is the effective mass
of an electron, and we have taken into account the fact that
each metallic layer has four independent 1D conduction
channels.

A metallic nanotube, placed on a silicon substrate be-
tween metallic contact lines, can be viewed as an inner con-
ductor of a transmission line whose outer conductor is
formed by nearby metallic bodies. The capacitance per unit
length of the line isc52pee0/ln(rg /r0). Heree is the dielec-
tric constant of the medium between the conductors,r 0 is the
outer radius of the nanotube, andr g is a distance from a
metallic ground. The current carriers of the nanotube occupy
1D conduction bands and, in contrast to the carriers in me-
tallic wires, they have a low total densityn, resulting in a
large kinetic energy stored in the current flow. Therefore, the
magnetic inductancel m5m0 ln(rg /r0)/2p, which is usually
relevant for transmission lines, has to be replaced by the
kinetic inductancel kin5m* /ne2, sincel kin@ l m . In addition,
for a 1D plasmon in a nanotube the inverse compressibility
dm/dn5m* vF

2/n of the neutral Fermi gas becomes compa-
rable to the electrostatic inverse compressibilitye2/c of the
transmission line geometry. This can be taken into account
by renormalization of the nanotube capacitance intoc̃:
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Hence, the plasmon velocityvpl is
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and in the expression for the line impedanceZ5V/I ,

Z5Al kin / c̃5 l kinvpl5@ l kin /c1~RK/8M !2#1/2, ~3!

V is the electrochemical~not only electric! potential differ-
ence, andRK5h/e2 is the quantum resistance.

In the above classical electrodynamic analysis the 1D
plasmon modes are the only excitations of the nanotube
transmission line. The LL model for an infinitely long
MWNT ~Refs. 8 and 9! recovers the electrodynamic plasmon
mode withvpl given by Eq.~2! @cf. the expression after Eq.
~4! in Ref. 8#. But in addition to the plasmon mode, the
Luttinger liquid has charge-neutral modes~a spin wave
among them!, which propagate with the velocity different
from vpl and keep the total charge density constant. The
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Coulomb interaction, measured by the difference ofvpl /vF
from unity, suppresses the single-electron density of state
~DOS! r(E)5dn/dE near the Fermi level. The DOS is
given by the Fourier component of the electron Green’s func-
tion ^ĉ(x,t)ĉ(x,0)†& @ĉ(x,t) is the electron operator# and is
probed by theIV curve: dI/dV}r(eV). At low energies
r(E)}EaL, where for an end-contacted infinitely long
MWNT ~Refs. 9 and 10!

aL5~vpl /vF21!/4M . ~4!

In the limit of largeM or no interactionvpl /vF51, the IV
characteristics of a MWNT approach Ohm’s law (aL50);
i.e., the Luttinger liquid turns into a Fermi liquid.

Another approach, EQF theory, considers the effects of
environment quantum fluctuations onIV characteristics un-
der the conditions of a Coulomb blockade. A nonresistive,
infinitely long nanotube acts as a dissipative environment,
i.e., as a heat bath with which the tunneling electron can
exchange energy.6,7 The energy exchange is characterized by
the functionP(E), which is a Fourier component of the cor-
relator ^ei ŵ(t)e2 i ŵ(0)&, where ŵ(t) is the operator of the
phase. AtT50, P(E) is proportional to thesecondderiva-
tive of the current:d2I /dV2}P(eV). In the Coulomb block-
ade regime, i.e., when the voltage bias is less thane/CT ,
where CT is the capacitance of the tunnel contact, EQF
theory predicts thatP(E)}EaE21 and I}VaE11 with aE

52 Re$Z%/RK . Using the impedanceZ5Al kin / c̃ of the
nanotube, this yields the same power law as LL theory in the
large-M limit. This fact, pointed out in Ref. 10, is not acci-
dental. In the LL picture the current is suppressed because
there are no single-electron quasiparticles, and the charge is
transported by bosonic modes~plasmons!. Although in a
junction between 3D wires there are single-electron states
available ~in contrast to 1D!, a tunneling electron atV
!e/CT has not enough energy to get into them. As a result,
the charge is transported again with 1D plasmons, which
have similar properties for 1D and thin 3D wires.

On the other hand, one should expect a similarity between
r(E) and P(E), since both operatorsĉ† and e2 i ŵ, which
define these two functions, are creation operators for the
chargee. But if the exponentsaL andaE for the conductance
coincide, the exponentsaL andaE21 for r(E) and P(E),
respectively, differ by 1. One can show,11 however, that simi-
lar relations connect ther(E) andP(E) exponents with the
impedance:aL52Re$ZL%/RK21 and aE2152Re$Z%/RK
21. But due to charge-neutral modes, which were not con-
sidered in EQF theory, the nanotube impedance differs in LL
theory from the impedanceZ given by Eq. ~3!: ZL5Z
1(4M21)RK/8M . The difference in the impedance com-
pensates for the difference in the relations connectingr(E)
andP(E) with the conductance, and eventually in the large-
M limit both theories predict the same exponent.

But the two approaches differ in their predictions for high
voltages. According to EQF theory the power law is only
valid in the Coulomb-blockade regimevCT!1/Z. The rel-
evant frequencyv5eV/\ in this inequality corresponds to
the environment mode excited by a tunneling event; in our
experiments this means frequencies up to about 20 THz. At
high frequencies and voltages the environmental impedance
Z is shunted by the tunnel junction capacitanceCT and be-
comes (ivCT11/Z)21. Then EQF theory gives the formula7
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This high-voltage asymptotics, characterized by the Cou-
lomb offsete/2CT and the ‘‘tail’’ voltage}1/V, was experi-
mentally studied and discussed by Wahlgrenet al. and Pent-
tilä et al. within the horizon picture.12,13 In contrast to EQF
theory, in the LL approach the capacitanceCT of the tunnel-
ing contact is absent, and therefore this approach does not
predict a crossover to the ‘‘tail’’ asymptotics given by Eq.
~5!.

A summary of our four nanotube samples, each with a
diameter of about 15 nm, is presented in Table I. For contact,
we employed gold electrodes which were evaporated either

TABLE I. Summary of our samples of single, metallic tubes T1–T4.L1 andL2 denotes the length of the
tube over the metallic leads and the length of the free-standing section that is hanging;20 nm above the
substrate, respectively. For sample T4,L2 specifies the length in contact with SiO2. In the resistivity ratio
RR5R0(4.2 K)/R0(290 K), the values ofR0 have been obtained from slopes of theIV curves atI 50. T
denotes the measurement temperature for the data in Figs. 1 and 2. The junction capacitanceCT and tunnel-
ing resistanceRT are taken from theIV-curve fits using Eq.~5!. These fits also yield the lumped-element
environmental impedanceZ which is slightly different for positive and negative voltages. Kinetic inductance
obtained fromZ using c570 aF/mm and Eq.~3! is given by l kinZ

. The Luttinger-liquid powera is deter-
mined at 4,uVu,7 mV. The kinetic inductancel kina

is an estimate obtained using Eq.~3!. The voltage range
of the tail fits is given in the last column.

L1 /L2 T RT CT Z lkinZ
l kina

Range
(mm) RR ~K! (kV) ~aF! (kV) ~mH/m! a ~mH/m! ~mV!

T1 0.8/0.5 1.7 4.2 25 31 3.5/7.7 0.9/4.2 0.30 1.1 10-50
T2 0.5/0.3 3.0 0.1 20 33 1.3/2.3 0.1/0.4 0.12 0.2 15-50
T3 0.8/0.6 4.6 4.2 46 37 2.0/4.8 0.3/1.6 0.32 1.2 10-50
T4 0.9/2.3 3.0 0.1 68 111 1.8/2.7 0.2/0.5 0.17 0.3 7-20
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prior to or after the deposition of nanotubes. Deposition of
nanotubes was done as described in Ref. 14. Mapping of
nanotubes with respect to alignment marks as well as AFM
micromanipulation was performed using Park Scientific In-
struments Autoprobe CP. Chrome or titanium~2–3 nm layer!
was employed as an attachment layer before evaporating
gold. Vacuum brazing at 700 °C for 30 sec was employed to
lower the contact resistance in samples T1–T3. On the dilu-
tion refrigerator, the samples were mounted inside a tight
copper enclosure and the measurement leads were filtered
using 0.5 m of Thermocoax cable.

Tunnel junction capacitancesCT531–111 aF and resis-
tancesRT520–68 kV ~neglecting the tube resistance! were
determined from asymptotic behavior by fitting Eq.~4! to the
measuredIV curves. Owing to their relatively large size, the
contacts to the nanotube are not ideal and may cause a small
uncertainty in the interpretation of thea values. Namely,
EQF theory and the LL model in the strong interaction and
M@1 limit predict 2 times smallera values for the bulk
than for the end contact.7–9

Figure 1 illustrates the low-voltageIV curve of all four
samples T1–T4. We are plotting the quantity

Vo f f set5V2I
dV

dI
vs V,

which in the case of a power law yields a straight line with
the slopea/(11a). Only a slight deviation of linear behav-
ior is seen at low voltages in Fig. 1. This indicates that the
Coulomb blockade of the island is rather weakly seen~ex-
cept in T4!. The linear behavior also implies that the two
tunnel junctions become independent. At voltagesuVu
.5 mV, in spite of the additional wiggles, a slight tendency
toward saturation is observed in the data. This is consistent
with the EQF picture, which predicts that at high voltages
Vo f f set must gradually approach to aCT-dependent constant.
By fitting a straight line through each data set at 4,uVu
,7 mV, we obtaina50.2360.1 ~Table I!. Using Eqs.~2!
and~3! we obtainl kina

50.221.2 nH/mm for the kinetic in-

ductance. The capacitance for the nanotube,;70 aF/mm is
estimated using the average ofc52CT /L where we employ
the total tube lengthL for scaling.

Figure 2 displaysIV curves measured at large voltages. In
order to facilitate a direct comparison with the power-law
dependence, we have plotted our results on a log-log scale.
Our data are rather close to a single power law with smalla
but, at larger values ofa ~samples T1 and T3!, there is a
gradual approach toward a linear law as expected for a single
junction in a resistive environment. Thus both figures give
evidence that the environmental~EQF! theory is better suited
for the analysis at high voltages. In fact, also the saturation
observed by Bockrathet al.4 can be explained by an
asymptotic approach toward Ohm’s law.

The plasma resonances, which one expects in finite nano-
tubes, are washed away in our samples. This gives a lower
limit for the resistivity of the line,rL>Z/4. On the other
hand, theLC-line model works over our voltage range, i.e.,
r<v l kin , which results in an upper limit forr of the order of
1 kV/mm ~at 1 mV!. For comparison, from the two-terminal
resistance measurements we estimate thatr &20 kV/mm for
our tubes at dc.15

One may argue that the poor agreement of the LL picture
with the high-voltage part of theIV curves could be recon-
ciliated by including the junction capacitanceCT in the im-
pedance, as is done in EQF theory. There is, however, a
conceptual problem to do it. The density of states,r, is ex-
pected to be a bulk property and, therefore, independent of
CT . Moreover, inclusion ofCT in the impedance, which de-
terminesr, does not help one to match the LL picture with
experimental results. The capacitanceCT short-circuits the
environment impedance, andr(E) should decrease withE,
like P(E) in EQF theory. But sincedI/dV}r(E), in contrast
with EQF theory wheredI2/dV2}P(E), this yields a high-
voltage plateau~voltage-independent current!, but not Ohm’s
law with Coulomb offset. The introduction of a proper high-
energy cutoff in the LL model could explain a crossover to
Ohm’s law, but not a Coulomb offset. We expect this cutoff
to be larger than the region of our analysis which is bounded
by the presence of higher transverse modes above 50 mV.

FIG. 1. Offset voltageVo f f set5V2I /(dI/dV) vs V for all our
samples T1–T4; the power-law behaviorI}Va11 yields a straight
line in this kind of a plot. The dashed lines illustrate linear fits made
in the range 4,uVu,7 mV. The effect of the Coulomb blockade
near zero is seen to be small except for sample T4.

FIG. 2. High-voltageIV curves~both positive and negative po-
larities! on a log-log plot. The dashed line illustrates linear behavior
(a50). For details, see text.
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Fits, based on Eq.~5!, fall on top of the experimental data
in Fig. 2. In the fitting, we assume that the junctions at the
ends of the tube are symmetric and, in fact,I vs V/2 is fitted
to the single-junction formula. We also tried to incorporate a
cubic backgroundhV3 in the fitting, which was found essen-
tial in Al samples because of the deformation of the tunnel
barrier at high voltages.13 Surprisingly, the cubic term was
found negligible in all our nanotube samples. Our fits yield a
characteristic impedance ofZ51.3–7.7 kV for the resistive
environment. These results depend slightly on the measure-
ment polarity~see Table I!. Finally, using Eqs.~2! and ~3!,
we obtain for the kinetic inductancel kin50.1–4.2 nH/mm.

Table I contains parameters obtained both from the EQF
analysis for aLC-transmission line as well as from the
power-law exponents according to the LL model. The results
of the two methods overlap each other; the scatter of the
power-law analysis is slightly smaller than that of the envi-
ronmental analysis. In addition, we checked that the tem-
perature dependence of the measured conductance,dI/dV
}Ta, yielded consistent values ofa50.2560.1. As a final
result of all our determinations we quote the median value
l kin50.5 nH/mm. If we compare this with the theoretical
prediction l kin5RK/8MvF , we conclude that the average
number of conducting layers in our nanotubes is 8 and the

large variation of the inductance may come from the varia-
tion in M. The average value of 8 indicates that about every
third layer in our nanotubes is metallic.

To conclude, on the basis of our experimental results we
argue that, at high voltages, the environmental theory gives a
better account of transport measurements of multiwalled
nanotubes than the Luttinger-liquid picture, because the tun-
nel junction capacitance is neglected in Luttinger-liquid
theory. At lower voltages, no distinction between these two
theories can be made. Due to their large kinetic inductance,
nanotubes provide an excellent high-impedance environment
for normal junctions at high frequencies, which is crucial for
single-electronics phenomena. As the kinetic inductances of
different layers are in parallel in MWNT’s, these phenomena
will be more pronounced in single-walled carbon nanotubes.

Note added in proof. Recently we learned that M.
Bockrath has considered the transmission line analogy in
the context of carbon nanotubes. M. Bockrath, Ph.D. thesis
~University of California, Berkeley, CA, 1999!, unpublished.
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