131 research outputs found

    Facet-Dependent Intrinsic Activity of Single Co<sub>3</sub>O<sub>4</sub> Nanoparticles for Oxygen Evolution Reaction

    Get PDF
    Deciphering the influence of nanocatalyst morphology on their catalytic activity in the oxygen evolution reaction (OER), the limiting reaction in water splitting process, is essential to develop highly active precious metal-free catalysts, yet poorly understood. The intrinsic OER activity of Co3O4 nanocubes and spheroids is probed at the single particle level to unravel the correlation between exposed facets, (001) vs. (111), and activity. Single cubes with predominant (001) facets show higher activity than multi-faceted spheroids. Density functional theory calculations of different terminations and reaction sites at (001) and (111) surfaces confirm the higher activity of the former, expressed in lower overpotentials. This is rationalized by a change in the active site from octahedral to tetrahedral Co and the potential-determining step from *OH to *O for the cases with lowest overpotentials at the (001) and (111) surfaces, respectively. This approach enables the identification of highly active facets to guide shape-selective syntheses of improved metal oxide nanocatalysts for water oxidation

    Modulations in martensitic Heusler alloys originate from nanotwin ordering

    Get PDF
    Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite

    Built-in and induced polarization across LaAlO3_3/SrTiO3_3 heterojunctions

    Full text link
    Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic planes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar \lao ~thin films grown on \sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93 meV/\AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in \sto, illuminating a unique property of \sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201

    Parallel electron-hole bilayer conductivity from electronic interface reconstruction

    Get PDF
    The perovskite SrTiO3_3-LaAlO3_3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3_3 capping layer prevents structural and chemical reconstruction at the LaAlO3_3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3_3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.Comment: Phys. Rev. Lett., in pres

    Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO3_3/SrTiO3_3 Interfaces

    Get PDF
    A two dimensional electronic system with novel electronic properties forms at the interface between the insulators LaAlO3_3 and SrTiO3_3. Samples fabricated until now have been found to be either magnetic or superconducting, depending on growth conditions. We combine transport measurements with high-resolution magnetic torque magnetometry and report here evidence of magnetic ordering of the two-dimensional electron liquid at the interface. The magnetic ordering exists from well below the superconducting transition to up to 200 K, and is characterized by an in-plane magnetic moment. Our results suggest that there is either phase separation or coexistence between magnetic and superconducting states. The coexistence scenario would point to an unconventional superconducting phase in the ground state.Comment: 10 pages, 4 figure

    Control of electronic conduction at an oxide heterointerface using surface polar adsorbates

    Full text link
    The transfer of electrons between a solid surface and adsorbed atomic or molecular species is fundamental in natural and synthetic processes, being at the heart of most catalytic reactions and many sensors. In special cases, metallic conduction can be induced at the surface of, for example, Si-terminated SiC1, or mixed-terminated ZnO2, in the presence of a hydrogen adlayer. Generally, only the surface atoms are significantly affected by adsorbates. However, remotely changing electronic states far from the adsorbed layer is possible if these states are electrostatically coupled to the surface. Here we show that the surface adsorption of common solvents such as acetone, ethanol, and water can induce a large change (factor of three) in the conductivity at the buried interface between SrTiO3 substrates and LaAlO3 thin films3-8. This phenomenon is observed only for polar solvents. Our result provides experimental evidence that adsorbates at the LaAlO3 surface induce accumulation of electrons at the LaAlO3/SrTiO3 interface, suggesting a general polarization-facilitated electronic transfer mechanism, which can be used for sensor applications.Comment: 14 pages, 4 figure

    Long-range transfer of electron-phonon coupling in oxide superlattices

    Full text link
    The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is currently the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor YBa2Cu3O7\bf YBa_2 Cu_3 O_7 and the colossal-magnetoresistance compound La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} that suggests a new approach to this problem. We find that a rotational mode of the MnO6_6 octahedra in La2/3Ca1/3MnO3\bf La_{2/3}Ca_{1/3}MnO_{3} experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the YBa2Cu3O7\bf YBa_2 Cu_3 O_7 layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature Material

    Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO3_3/SrTiO3_3 Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Full text link
    LaNiO3_3 (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO3_3 (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO3_3)0.3_{0.3}(Sr2_2AlTaO6_6)0.7_{0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d eg and t2g states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La0.7_{0.7}Sr0.3_{0.3}MnO3_3/SrTiO3_3 superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our conclusions are also supported in several ways by comparison to DFT calculations for the parent materials and the superlattice, including layer-resolved density-of-states results
    • …
    corecore