131 research outputs found
Facet-Dependent Intrinsic Activity of Single Co<sub>3</sub>O<sub>4</sub> Nanoparticles for Oxygen Evolution Reaction
Deciphering the influence of nanocatalyst morphology on their catalytic activity in the oxygen evolution reaction (OER), the limiting reaction in water splitting process, is essential to develop highly active precious metal-free catalysts, yet poorly understood. The intrinsic OER activity of Co3O4 nanocubes and spheroids is probed at the single particle level to unravel the correlation between exposed facets, (001) vs. (111), and activity. Single cubes with predominant (001) facets show higher activity than multi-faceted spheroids. Density functional theory calculations of different terminations and reaction sites at (001) and (111) surfaces confirm the higher activity of the former, expressed in lower overpotentials. This is rationalized by a change in the active site from octahedral to tetrahedral Co and the potential-determining step from *OH to *O for the cases with lowest overpotentials at the (001) and (111) surfaces, respectively. This approach enables the identification of highly active facets to guide shape-selective syntheses of improved metal oxide nanocatalysts for water oxidation
Modulations in martensitic Heusler alloys originate from nanotwin ordering
Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite
Built-in and induced polarization across LaAlO/SrTiO heterojunctions
Ionic crystals terminated at oppositely charged polar surfaces are inherently
unstable and expected to undergo surface reconstructions to maintain
electrostatic stability. Essentially, an electric field that arises between
oppositely charged atomic planes gives rise to a built-in potential that
diverges with thickness. In ultra thin film form however the polar crystals are
expected to remain stable without necessitating surface reconstructions, yet
the built-in potential has eluded observation. Here we present evidence of a
built-in potential across polar \lao ~thin films grown on \sto ~substrates, a
system well known for the electron gas that forms at the interface. By
performing electron tunneling measurements between the electron gas and a
metallic gate on \lao ~we measure a built-in electric field across \lao ~of 93
meV/\AA. Additionally, capacitance measurements reveal the presence of an
induced dipole moment near the interface in \sto, illuminating a unique
property of \sto ~substrates. We forsee use of the ionic built-in potential as
an additional tuning parameter in both existing and novel device architectures,
especially as atomic control of oxide interfaces gains widespread momentum.Comment: 6 pages, 4 figures. Submitted to Nature physics on May 1st, 201
Parallel electron-hole bilayer conductivity from electronic interface reconstruction
The perovskite SrTiO-LaAlO structure has advanced to a model system
to investigate the rich electronic phenomena arising at polar interfaces. Using
first principles calculations and transport measurements we demonstrate that an
additional SrTiO capping layer prevents structural and chemical
reconstruction at the LaAlO surface and triggers the electronic
reconstruction at a significantly lower LaAlO film thickness than for the
uncapped systems. Combined theoretical and experimental evidence (from
magnetotransport and ultraviolet photoelectron spectroscopy) suggests two
spatially separated sheets with electron and hole carriers, that are as close
as 1 nm.Comment: Phys. Rev. Lett., in pres
Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO/SrTiO Interfaces
A two dimensional electronic system with novel electronic properties forms at
the interface between the insulators LaAlO and SrTiO. Samples
fabricated until now have been found to be either magnetic or superconducting,
depending on growth conditions. We combine transport measurements with
high-resolution magnetic torque magnetometry and report here evidence of
magnetic ordering of the two-dimensional electron liquid at the interface. The
magnetic ordering exists from well below the superconducting transition to up
to 200 K, and is characterized by an in-plane magnetic moment. Our results
suggest that there is either phase separation or coexistence between magnetic
and superconducting states. The coexistence scenario would point to an
unconventional superconducting phase in the ground state.Comment: 10 pages, 4 figure
Control of electronic conduction at an oxide heterointerface using surface polar adsorbates
The transfer of electrons between a solid surface and adsorbed atomic or
molecular species is fundamental in natural and synthetic processes, being at
the heart of most catalytic reactions and many sensors. In special cases,
metallic conduction can be induced at the surface of, for example,
Si-terminated SiC1, or mixed-terminated ZnO2, in the presence of a hydrogen
adlayer. Generally, only the surface atoms are significantly affected by
adsorbates. However, remotely changing electronic states far from the adsorbed
layer is possible if these states are electrostatically coupled to the surface.
Here we show that the surface adsorption of common solvents such as acetone,
ethanol, and water can induce a large change (factor of three) in the
conductivity at the buried interface between SrTiO3 substrates and LaAlO3 thin
films3-8. This phenomenon is observed only for polar solvents. Our result
provides experimental evidence that adsorbates at the LaAlO3 surface induce
accumulation of electrons at the LaAlO3/SrTiO3 interface, suggesting a general
polarization-facilitated electronic transfer mechanism, which can be used for
sensor applications.Comment: 14 pages, 4 figure
Long-range transfer of electron-phonon coupling in oxide superlattices
The electron-phonon interaction is of central importance for the electrical
and thermal properties of solids, and its influence on superconductivity,
colossal magnetoresistance, and other many-body phenomena in
correlated-electron materials is currently the subject of intense research.
However, the non-local nature of the interactions between valence electrons and
lattice ions, often compounded by a plethora of vibrational modes, present
formidable challenges for attempts to experimentally control and theoretically
describe the physical properties of complex materials. Here we report a Raman
scattering study of the lattice dynamics in superlattices of the
high-temperature superconductor and the
colossal-magnetoresistance compound that suggests
a new approach to this problem. We find that a rotational mode of the MnO
octahedra in experiences pronounced
superconductivity-induced lineshape anomalies, which scale linearly with the
thickness of the layers over a remarkably long range of
several tens of nanometers. The transfer of the electron-phonon coupling
between superlattice layers can be understood as a consequence of long-range
Coulomb forces in conjunction with an orbital reconstruction at the interface.
The superlattice geometry thus provides new opportunities for controlled
modification of the electron-phonon interaction in complex materials.Comment: 13 pages, 4 figures. Revised version to be published in Nature
Material
Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO/SrTiO Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission
LaNiO (LNO) is an intriguing member of the rare-earth nickelates in
exhibiting a metal-insulator transition for a critical film thickness of about
4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such
thin films also show a transition to a metallic state in superlattices with
SrTiO (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to
better understand this transition, we have studied a strained LNO/STO
superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an
(LaAlO)(SrAlTaO) substrate using soft x-ray
standing-wave-excited angle-resolved photoemission (SWARPES), together with
soft- and hard- x-ray photoemission measurements of core levels and
densities-of-states valence spectra. The experimental results are compared with
state-of-the-art density functional theory (DFT) calculations of band
structures and densities of states. Using core-level rocking curves and x-ray
optical modeling to assess the position of the standing wave, SWARPES
measurements are carried out for various incidence angles and used to determine
interface-specific changes in momentum-resolved electronic structure. We
further show that the momentum-resolved behavior of the Ni 3d eg and t2g states
near the Fermi level, as well as those at the bottom of the valence bands, is
very similar to recently published SWARPES results for a related
LaSrMnO/SrTiO superlattice that was studied using the
same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which
further validates this experimental approach and our conclusions. Our
conclusions are also supported in several ways by comparison to DFT
calculations for the parent materials and the superlattice, including
layer-resolved density-of-states results
- …