2,816 research outputs found

    Local properties of patterned vegetation: quantifying endogenous and exogenous effects

    Full text link
    Dryland ecosystems commonly exhibit periodic bands of vegetation, thought to form due to competition between individual plants for heterogeneously distributed water. In this paper, we develop a Fourier method for locally identifying the pattern wavenumber and orientation, and apply it to aerial images from a region of vegetation patterning near Fort Stockton, Texas. We find that the local pattern wavelength and orientation are typically coherent, but exhibit both rapid and gradual variation driven by changes in hillslope gradient and orientation, the potential for water accumulation, or soil type. Endogenous pattern dynamics, when simulated for spatially homogeneous topographic and vegetation conditions, predict pattern properties that are much less variable than the orientation and wavelength observed in natural systems. Our local pattern analysis, combined with ancillary datasets describing soil and topographic variation, highlights a largely unexplored correlation between soil depth, pattern coherence, vegetation cover and pattern wavelength. It also, surprisingly, suggests that downslope accumulation of water may play a role in changing vegetation pattern properties

    Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    Get PDF
    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary

    Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    Get PDF
    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes

    Why is the Arkavathy River drying? A multiple-hypothesis approach in a data-scarce region

    Get PDF
    Water planning decisions are only as good as our ability to explain historical trends and make reasonable predictions of future water availability. But predicting water availability can be a challenge in rapidly growing regions, where human modifications of land and waterscapes are changing the hydrologic system. Yet, many regions of the world lack the long-term hydrologic monitoring records needed to understand past changes and predict future trends. We investigated this “predictions under change” problem in the data-scarce Thippagondanahalli (TG Halli) catchment of the Arkavathy sub-basin in southern India. Inflows into TG Halli reservoir have declined sharply since the 1970s. The causes of the drying are poorly understood, resulting in misdirected or counter-productive management responses. Five plausible hypotheses that could explain the decline were tested using data from field surveys and secondary sources: (1) changes in rainfall amount, seasonality and intensity; (2) increases in temperature; (3) groundwater extraction; (4) expansion of eucalyptus plantations; and (5) fragmentation of the river channel. Our results suggest that groundwater pumping, expansion of eucalyptus plantations and, to a lesser extent, channel fragmentation are much more likely to have caused the decline in surface flows in the TG Halli catchment than changing climate

    Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease

    Get PDF
    BACKGROUND: Characterizing changing brain structure in neurodegeneration is fundamental to understanding longterm effects of pathology and ultimately providing therapeutic targets. It is well established that Huntington’s disease (HD) gene carriers undergo progressive brain changes during the course of disease, yet the long-term trajectory of cortical atrophy is not well defined. Given that genetic therapies currently tested in HD are primarily expected to target the cortex, understanding atrophy across this region is essential. METHODS: Capitalizing on a unique longitudinal dataset with a minimum of 3 and maximum of 7 brain scans from 49 HD gene carriers and 49 age-matched control subjects, we implemented a novel dynamical systems approach to infer patterns of regional neurodegeneration over 10 years. We use Bayesian hierarchical modeling to map participant- and group-level trajectories of atrophy spatially and temporally, additionally relating atrophy to the genetic marker of HD (CAG-repeat length) and motor and cognitive symptoms. RESULTS: We show, for the first time, that neurodegenerative changes exhibit complex temporal dynamics with substantial regional variation around the point of clinical diagnosis. Although widespread group differences were seen across the cortex, the occipital and parietal regions undergo the greatest rate of cortical atrophy. We have established links between atrophy and genetic markers of HD while demonstrating that specific cortical changes predict decline in motor and cognitive performance. CONCLUSIONS: HD gene carriers display regional variability in the spatial pattern of cortical atrophy, which relates to genetic factors and motor and cognitive symptoms. Our findings indicate a complex pattern of neuronal loss, which enables greater characterization of HD progression

    Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    Get PDF
    International audienceCold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex and still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this work, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) has been synthesized in phosphate buffered aqueous solution and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. Only the composition of the plasma gas has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the PBS solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, has been carefully characterized. These results allow going further in the understanding of the effect of plasma reactive species on model cell membranes in physiological liquids. Permeation through the liposomal membrane and reaction of plasma reactive species with molecules encapsulated inside the liposomes has also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under pure nitrogen atmosphere

    Introducing service improvement to the initial training of clinical staff

    Get PDF
    BACKGROUND: It is well recognised in healthcare settings that clinical staff have a major influence over change in how services are provided. If a culture of systematic service improvement is to be established, it is essential that clinical staff have an understanding of what is required and their role in its application. METHODS: This paper describes the development of short educational interventions (a module of 6-8 contact hours or a longer module of 18-30 h) for inclusion in the initial training of future clinical staff (nursing, medicine, physiotherapy, occupational therapy, dietetics, social work, operating department practice, public health and clinical psychology) and presents the results of an evaluation of their introduction. Each module included teaching on process/systems thinking, initiating and sustaining change, personal and organisational development, and public and patient involvement. RESULTS: Over 90% of students considered the modules relevant to their career. Nearly 90% of students felt that they could put their learning into practice, although the actual rate of implementation of changes during the pilot period was much lower. The barriers to implementation most commonly cited were blocks presented by existing staff, lack of time and lack of status of students within the workforce. CONCLUSION: This pilot demonstrates that short educational interventions focused on service improvement are valued by students and that those completing them feel ready to contribute. Nevertheless, the rate of translation into practice is low. While this may reflect the status of students in the health service, further research is needed to understand how this might be enhanced

    On the Double Planet System Around HD 83443

    Get PDF
    The Geneva group has reported two Saturn-mass planets orbiting HD 83443 (K0V) with periods of 2.98 and 29.8 d. The two planets have raised interest in their dynamics because of the possible 10:1 orbital resonance and the strong gravitational interactions. We report precise Doppler measurements of HD 83443 obtained with the Keck/HIRES and the AAT/UCLES spectrometers. These measurements strongly confirm the inner planet with period of 2.985 d, with orbital parameters in very good agreement with those of the Geneva group. However these Doppler measurements show no evidence of the outer planet, at thresholds of 1/4 (3 m/s) of the reported velocity amplitude of 13.8 m/s. Thus, the existence of the outer planet is in question. Indeed, the current Doppler measurements reveal no evidence of any second planet with periods less than a year.Comment: 26 pages incl. 3 tables and 8 figures; uses AASTE
    corecore