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ABSTRACT

The Geneva group has reported two Saturn-mass planets orbiting HD 83443 (K0 V) with periods of 2.98
and 29.8 days. The two planets have raised interest in their dynamics because of the possible 10 : 1 orbital res-
onance and the strong gravitational interactions. We report precise Doppler measurements of HD 83443
obtained with the Keck/HIRES and the Anglo-Australian Telescope (AAT) UCLES spectrometers. These
measurements strongly confirm the inner planet with a period of 2.985 days, with orbital parameters in very
good agreement with those of the Geneva group. However, these Doppler measurements show no evidence
of the outer planet, at thresholds of one-fourth (3 m s�1) of the reported velocity amplitude of 13.8 m s�1.
Thus, the existence of the outer planet is in question. Indeed, the current Doppler measurements reveal no
evidence of any second planet with a period less than a year.

Subject headings: planetary systems — stars: individual (HD 83443)

1. INTRODUCTION

Several multiple-planet systems have been reported,
including the triple-planet system around Upsilon Andro-
medae (Butler et al. 1999) and double-planet systems
around GJ 876 (Marcy et al. 2001a), HD 83443 (Mayor et
al. 2002), HD 168443 (Marcy et al. 2001b; Udry et al. 2002),
and 47 UMa (Fischer et al. 2002). Double-planet systems
have also been reported in a press release10 for HD 82943
and HD 74156. These multiple-planet systems contain plan-
ets reported to range from a Saturn mass to nearly 10MJUP,
all orbiting within 4 AU.

Interactions between the planets in some of these systems,
notably Gliese 876, are measurable on a timescale of a few
years (Lissauer & Rivera 2001; Laughlin & Chambers 2001;
Rivera & Lissauer 2001). Doppler measurements can reveal
the ongoing gravitational perturbations and constrain both
the planet masses and orbital inclinations. The interactions
and orbital resonances, both mean-motion and secular, pro-
vide clues about the dynamical history of the systems (Snell-

grove, Papaloizou, & Nelson 2001; Lee & Peale 2002;
Chiang, Fischer, & Thommes 2002).

A most extraordinary double-planet system was reported
for HD 83443 (Mayor et al. 2002). Their Doppler measure-
ments made with the CORALIE spectrometer indicate the
existence of two Saturn-mass planets that both reside within
0.2 AU. The inner planet has an orbital period of 2.985
days, an eccentricity of 0.079 (�0.033), a minimum (M sin i)
mass of 0.34 MJUP, and an orbital distance of 0.038 AU.
The orbital period is the shortest known for extrasolar plan-
ets. The nonzero eccentricity of this inner planet is notable,
as planets with periods less than 5 days suffer tidal circular-
ization (Wu & Goldreich 2002). With the exception of the
Saturn-mass planet around HD 46375 (Marcy, Butler, &
Vogt 2000), all 15 of the previously discovered ‘‘ 51 Peg–
like ’’ planets have spectral types of G5 or earlier.

Mayor et al. (2002) report a remarkable second planet
around HD 83443. It has an orbital period of 29.83 (�0.18)
days, an eccentricity of 0.42, a minimum (M sin i) mass of
0.16 MJUP, and an orbital distance of 0.17 AU. This outer
planet induces a velocity semiamplitude in the star of
K ¼ 13:8� 1 m s�1, rendering it a 14 � detection. This
planet has the smallest M sin i yet reported and is only the
third reported planet with a semiamplitude smaller than
15 m s�1 (e.g., Marcy et al. 2000; Fischer et al. 2002).

Both of the planets were indicated by Doppler measure-
ments obtained with the 1.2 m Leonhard Euler telescope at
the ESO La Silla Observatory, which feeds the CORALIE
spectrometer (Queloz et al. 2000). Wavelength calibration is
achieved by coupling the telescope and thorium lamp to the
spectrometer with a double-scrambled fiber. The quoted
instrumental precision is now 2m s�1 (Udry et al. 2002).

As the two planets orbiting HD 83443 are crowded within
0.2 AU, the system is dynamically active. Calculations by J.
Laskar and W. Benz (reported in Mayor et al. 2002), Wu &
Goldreich (2002), andM. H. Lee & S. J. Peale (2002, private
communication) suggest the occurrence of significant gravi-
tational interactions between the two planets. The tidal cir-
cularization timescale for the inner planet of HD 83443 is
estimated to be 3� 108 yr (Wu &Goldreich 2002), while the
star is estimated to have an age of 6.5 Gyr. In this context,
the nonzero eccentricity of the inner planet and the apside
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alignment of the two orbits are understood to be due to sec-
ular interactions between the two planets and tidal interac-
tions with the star (Mayor et al. 2002; Wu & Goldreich
2002). These in turn constrain the orbital inclination of this
system and the radius of the inner planet (Wu & Goldreich
2002). The dynamical evolution that led to the system may
involve migration and resonances (M. H. Lee & S. J. Peale
2002, private communication).

Section 2 of this paper describes new Doppler measure-
ments of HD 83443 made from the Keck and AAT tele-
scopes, including a search for the two planets, notably the
interesting outer planet. Our failure to detect the outer
planet is dicussed in x 3.

2. DOPPLER VELOCITIES AND PERIODICITIES

HD 83443 (HIP 47202) is among the fainter G and K
dwarfs surveyed by precision Doppler programs with
V ¼ 8:23 and B�V ¼ 0:811 (Perryman et al. 1997), consis-
tent with the assigned spectral type, K0 V. The Hipparcos-
derived distance is 43.5 pc. (Note that the distance of 23 pc
reported inMayor et al. 2002 is incorrect.) The star is photo-
metrically stable at the level of Hipparcos measurement
uncertainty. The metallicity of the star, ½Fe=H� ¼ þ0:38
(Santos, Israelian, & Mayor 2000a), is similar to other stars
with 51 Peg–like planets.

The precise Doppler observations presented in this paper
were made with the HIRES echelle spectrometer (Vogt et al.
1994) on the 10 m Keck I Telescope and the UCLES echelle
spectrometer (Diego et al. 1990) on the 3.9 m Anglo-
Australian Telescope (AAT). These spectrometers are oper-
ated at a resolution of R � 80; 000 and R � 45; 000, respec-
tively. Wavelength calibration is carried out by means of an
iodine absorption cell (Marcy & Butler 1992) that super-
poses a reference iodine spectrum directly on to the stellar
spectra (Butler et al. 1996). These systems currently achieve
a photon-limited measurement precision of 3 m s�1.
Detailed information on these two systems, including dem-
onstration stable stars, can be found in Vogt et al. (2000)
(Keck) and Butler et al. (2001) (AAT).

Based on our photometrically estimated metallicity,
½Fe=H� ¼ þ0:31, we added HD 83443 to the Anglo-
Australian precision Doppler survey in 1999 February. This
is among the very faintest stars in the AAT survey. Expo-
sures of 10 minutes on the 3.9 m AAT yield a typical signal-
to-noise ratio (S/N) of �70, giving a median measurement
uncertainty of 8.0 m s�1 (Butler et al. 2001). A total of 16
AAT observations of HD 83443 have been made between
1999 February and 2002 March. HD 83443 was added to
the Keck precision Doppler survey (Vogt et al. 2000) in
2000 December as a result of the CORALIE announcement
of a double-planet system. A total of 20 Keck observations
have been obtained through 2002 March. The AAT and
Keck velocity measurements are listed in Table 1.

We fitted the velocities with a simple Keplerian model for
which the usual free parameters are P, Tp, e, !, and K, as
well as a system velocity zero point �. Figures 1 and 2 show
the Keck and AAT velocities, respectively, phased at the
best-fit Keplerian orbital period of 2.9856 days. The
reduced �2

� to the Keplerian fits to these data sets are 1.33
and 0.83, respectively. Figure 3 shows the combined set of
velocities phased.

Figure 1 shows that a single-Keplerian model, without
invoking a second planet, yields a fit to the Keck velocities

TABLE 1

Velocities for HD 83443

JulianDate� 2,450,000

Radial Velocity

(m s�1)

Error

(m s�1) Telescope

212.1830.......................... �61.0 10.2 AAT

213.1756.......................... �5.7 10.6 AAT

682.9088.......................... 26.5 8.6 AAT

898.0961.......................... 26.0 2.7 Keck

899.0788.......................... �52.3 2.5 Keck

900.0854.......................... 39.9 2.5 Keck

901.0806.......................... 22.4 2.6 Keck

919.2047.......................... 4.1 11.6 AAT

920.1821.......................... �48.0 9.6 AAT

971.9566.......................... 50.2 3.2 Keck

972.9432.......................... �7.0 3.7 Keck

974.8502.......................... 47.2 3.3 Keck

981.9535.......................... �7.0 3.2 Keck

982.9366.......................... �46.2 2.9 Keck

983.0440.......................... �29.4 9.0 AAT

984.0236.......................... 40.0 9.8 AAT

1003.7982........................ �40.1 3.1 Keck

1006.9015........................ �28.6 2.8 Keck

1007.8096........................ 52.1 2.3 Keck

1009.0816........................ �32.8 9.7 AAT

1060.9180........................ 0.5 7.8 AAT

1062.7608........................ �37.2 3.4 Keck

1064.7379........................ 62.8 2.7 Keck

1091.8643........................ 55.2 9.7 AAT

1092.8878........................ �57.8 8.4 AAT

1127.8521........................ 35.1 13.4 AAT

1188.2812........................ �33.9 5.0 AAT

1189.2733........................ �11.3 10.6 AAT

1219.1297........................ �14.7 2.5 Keck

1236.1362........................ �50.4 2.2 Keck

1243.1498........................ �3.1 3.0 Keck

1307.9118........................ �56.5 2.3 Keck

1333.9629........................ 21.6 2.3 Keck

1334.8507........................ �53.7 2.6 Keck

1359.1162........................ �28.7 7.4 AAT

1360.1546........................ 67.3 11.1 AAT

Fig. 1.—Phased Doppler velocities for HD 83443 from Keck. The solid
line is the best-fit Keplerian orbit assuming only a single planet. The period
p ¼ 2:986 days and semiamplitude K ¼ 57 m s�1 are nearly identical to the
CORALIE parameters for the inner planet. The small rms of the residuals
of 3.8 m s�1 is consistent with errors, implying no evidence for a second
planet.
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with an rms of 4 m s�1. While this strongly confirms the
inner planet, the low rms is surprising because the reported
second planet causes a semiamplitude of 13.8 m s�1 (Mayor
et al. 2002) but is not included in this single-Keplerian fit.
Similarly, the AAT velocities are well fitted, within measure-
ment uncertainty, with a single-Keplerian model, as shown
in Figure 2.

The combined velocities fromKeck and AAT (Fig. 3) can
also be fitted with a single-Keplerian model and yield a
semiamplitude K ¼ 57 m s�1, an orbital eccentricity
e ¼ 0:05, and a minimum mass (M sin i) of 0.34MJUP. Here
we have adopted a stellar mass of 0.79 M� (Mayor et al.
2002). The actual stellar mass is probably closer to 1.0 M�
after properly accounting for the high metallicity of the star.
The rms to this Keplerian fit for the combined Keck and

AAT observations is 8.1 m s�1, and the corresponding
reduced �2

� is 1.39.
Figure 4 shows the residuals to the single-Keplerian fit to

the combined Keck and AAT data. The rms of the residuals
are 3.8 and 10.6 m s�1, respectively, for the Keck and AAT
observations. The Keplerian orbital parameters derived
from the separate and combined Keck and AAT observa-
tions are listed in Table 2, along with the orbital parameters
from the Geneva Web site for both of the planets
announced from the CORALIE data.11 The orbital parame-
ters for the inner planet, HD 83443b, derived from the Keck
and AAT data sets are in good agreement with the CORA-
LIE result, differing primarily in that the Keck-AAT orbit is
nearly circular, within measurement uncertainty, as are
other extrasolar planets within 0.05 AU.

Themedian internal uncertainty of the Keck observations
is 2.8 m s�1. Based on the Ca ii H and K lines, we measure
the chromospheric diagnostic R0

HK of HD 83443 to be
logðR0

HKÞ ¼ �4:85. The Doppler velocity ‘‘ jitter ’’ associ-
ated with this level of activity for a K0 V star is 3.0 m s�1

(Saar, Butler, &Marcy 1998; Saar & Fischer 2000; Santos et
al. 2000b). Adding the Doppler jitter in quadrature with the
measurement uncertainty of 3 m s�1 produces an expected
Keplerian rms to the Keck data of 4.1 m s�1, which is consis-
tent with the observed rms of 3.8 m s�1.

The AAT and Keck data sets have independent and arbi-
trary velocity zero-points. The velocity offset between these
two data sets was thus left as an additional free parameter in
the combined Keplerian fit. As this velocity zero point is
dependent on the model used to fit the data, it is not possible
to use the combined data set to search for multiple periodici-
ties. As the Keck data has both better phase coverage and
significantly higher precision than the AAT data, we
intensely searched the Keck velocity set for evidence of a
second planet with a period of 29.83 days. However, we also
searched the AAT velocities for the second planet, yielding
similar results as from the Keck data.

11 See http://obswww.unige.ch/~udry/planet/planet.html.

Fig. 2.—Phased Doppler velocities for HD 83443 from the AAT data.
The solid line is the best-fit Keplerian orbit assuming only a single planet.
The period p ¼ 2:986 days and semiamplitude K ¼ 52:4 m s�1 are similar
to the CORALIE parameters for the inner planet. The rms to the Keplerian
fit, 8 m s�1, is consistent with measurement uncertainty.

Fig. 3.—Phased Doppler velocities for HD 83443 from the combined
Keck (circles) and AAT (squares) data. The solid line is the best-fit Kepler-
ian orbit. The period p ¼ 2:986 days and semiamplitude K ¼ 57 m s�1 are
nearly identical to the CORALIE parameters for the inner planet. Within
measurement uncertainty, the eccentricity derived from the Keck-AAT
data set is consistent with zero, similar to other ‘‘ 51 Peg–like ’’ planets.

Fig. 4.—Residual velocities from the best-fit single Keplerian for HD
83443, using the combined Keck (circles) and AAT (squares) data. The
Keck residuals have an rms of 3.8 m s�1, consistent with the combined
effects of measurement uncertainty and Doppler jitter. The AAT re-
siduals have an rms of 10.6 m s�1, consistent with measurement uncertainty
and jitter.
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Periodogram analysis (Scargle 1982; Gilliland & Baliunas
1987) reveals a strong periodicity near 3 days for both the
Keck and AAT data sets. Figure 5a shows the periodogram
for the Keck data. The highest peak is the 2.986 day period.
The dotted line is the 1% false alarm level. There remain no
other significant peaks notably near 29.83 days. Since a
strong primary peak can hide secondary peaks (Butler et al.
1999), we have removed the primary peak by subtracting off
the best-fit Keplerian from Figure 3. Figure 5b shows the
periodogram of the Keck velocity residuals from Figure 4.
No significant peaks remain.

We considered the possibility that a 29.8 day periodicity
in our velocities, caused by an outer planet, might have been
missed in the Keck data because of the temporal sampling
of velocity measurements. The observational window func-
tion may cause blind spots at certain periods. To test this
possibility, we constructed 1000 artificial velocity sets. The
fake velocities were calculated from the Keplerian orbital
parameters of both planets by simply adding the motion of
the star caused by each planet. We adopted the orbital
parameters for both planets fromMayor et al. (2002), listed
here in Table 2 as planets ‘‘ b ’’ and ‘‘ c.’’ In the simulation,
we sampled the reflex velocity of the star at the times of the
20 Keck observations listed in Table 1. In addition, random
noise with an rms of 4.0 m s�1 was added to each of these
artificial data sets to simulate the combined effects of Dop-
pler jitter and the Keck measurement errors.

Each of these fake data sets was then fitted with a single
least-squares Keplerian, and the rms to this single-Kepler-
ian fit was recorded. A histogram of the rms for the resulting
single-Keplerian fits is shown in Figure 6. The rms of these
fits ranges from 6.7 to 14.0 m s�1. The median rms to the

TABLE 2

Orbital Parameters

Star

Period

(days)

K

(m s�1) e

!

(deg)

T0

(JulianDate� 2,450,000)

M sin i

(MJUP)

a

(AU) Nobs

rms

(m s�1)

Kecka............... 2.98571(0.001) 57.0(4) 0.059(0.06) 44(40) 1876.99(0.15) 0.35 0.0375 20 3.81

AATb............... 2.98559(0.0006) 52.9(5) 0.00 0 1213.8(0.1) 0.32 0.0375 21 8.47

Keck-AATc...... 2.98553(0.0004) 57.5(2) 0.052(0.05) 46(30) 1211.24(0.1) 0.34 0.0375 36 8.09

CORALIE b .... 2.9853(0.0009) 56.1(1.4) 0.079(0.033) 300(17) 1386.50(0.14) 0.34 0.0380 93 6

CORALIE c..... 29.83(0.18) 13.8(1) 0.42(0.06) 337(10) 1569.59(0.73) 0.16 0.17 93 6

a Linear slope�5.5(3) m s�1 yr�1.
b Forced circular orbit, linear slope +7.4(3) m s�1 yr�1.
c Linear slope 0.0(1) m s�1 yr�1.

Fig. 5.—Periodogram of HD 83443 Keck velocities. (a) Periodogram of
measured velocities. The 2.986 day periodicity is indicated by the highest
periodogram peak. The 1% false alarm level is indicated with the dotted
line. (b) Periodogram of residual velocities, after subtracting off the best-fit
Keplerian. No significant periodicities remain after subtracting off the best-
fit single Keplerian. The arrows indicate 29.83 days, the purported period
of the outer planet from the CORALIE data.

Fig. 6.—Histogram of the rms of the residuals of a single-Keplerian fit to
synthetic velocities that stem from a double-planet system. One thousand
synthetic Doppler velocity sets were constructed and sampled at the times
of the Keck observations, including Gaussian noise. The rms of the resid-
uals to these fits ranges from 6.7 to 14.0 m s�1, with a median of 10.3 m s�1,
well above our errors of 3 m s�1. Thus, a single-Keplerian model should fail
to adequately fit the double-planet system that was reported. In contrast,
the rms of the single Keplerian fitted to the actual Keck data yields an rms
of only 3.8 m s�1, consistent with noise, indicated by the arrow, suggesting
that the second planet does not exist.
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single-Keplerian fit is 10.3 m s�1. In contrast, the rms of the
single-Keplerian fit to the actual Keck data is 3.8 m s�1, as
indicated by the arrow in Figure 6. Since none of our 1000
artificial velocity sets could be adequately fitted with a
single-Keplerian model, the supposed outer planet, if it
exists, would similarly not permit an adequate fit with a sin-
gle-Keplerian model. Thus, there is a less than 0.1% proba-
bility that the outer planet can hide in our actual velocities.
We conclude that the window function of the Keck observa-
tions would not prevent the detection of the outer planet of
HD 83443. Such an outer planet, if it existed, should have
caused an excess rms in the velocity residuals of �10 m s�1

when fitted by a single Keplerian. Such velocity residuals
are not seen.

It remains possible that the period of the outer planet of
HD 83443 might be slightly different from that given on the
CORALIE Web site. If this were so, and the window func-
tion of the Keck observations were unfortunately aligned, it
might still be possible that the outer planet could be lurking
in the Keck data set. To test this, we fitted the Keck data
set with a double Keplerian, using as the input guess the
double-Keplerian parameters from the CORALIE Web
site (listed in Table 2). The period, eccentricity, and velocity
semiamplitude of the inner and outer planets were frozen at
the reported values of the supposed outer planet, but the
remaining Keplerian parameters, including time of perias-
tron and !, were allowed to float. Outer planet periods rang-
ing from 28 to 32 days were systematically attempted in
steps of 0.001 days. Figure 7 shows the resulting best-fit
reduced �2

� for each of the trial periods. The arrow indicates
the location of the 29.83 day period, which yields a best-fit
reduced �2

� of 2.31, much worse than the single-Keplerian fit
to the Keck data set with a reduced �2

� of 1.33.
To estimate the largest semiamplitude allowed by the

Keck velocities for a planet in a �30 day orbit, we again fit-
ted the Keck data with a double Keplerian as in Figure 7,
but this time allowed the velocity semiamplitude of the
outer planet to float. Figure 8 shows this best-fit semiampli-
tude for a potential outer planet having orbital periods
ranging from 28 to 32 days. At 29.83 days, the best-fit ampli-

tude is 2.8 m s�1. The Keck data rule out any periodicities
between 29 and 31 days with an amplitude greater than 3 m
s�1. Given the temporal sampling of the Keck data, it
remains possible to hide a 13.8 m s�1 semiamplitude with a
period near 27.7 days from the current Keck data set. This is
�10 � removed from the CORALIE period of 29.83 days.

3. DISCUSSION

Precision Doppler observations made with the 10 mKeck
and the 3.9 m AAT strongly confirm the existence of the
inner planet orbiting HD 83443 and indicate that the orbital
parameters are in very good agreement with those reported
byMayor et al. (2002). The present orbital parameters differ
only marginally in that the orbit of the inner planet is circu-
lar within measurement uncertainty for the Keck and AAT
data, similar to other known close-in planets.

However, our Doppler measurements did not detect the
29.8 day outer planet, despite the clear ability to do so. The
present measurements impose a limit on any such velocity
periodicity at a level of no more than 3 m s�1, well below the
reported velocity amplitude of 13.8 m s�1. Orbital periods
within 2 days of 29.8 days would have been detected. The
supposed velocity amplitude of 13.8 m s�1 is 4 times larger
than the uncertainties in our velocity measurements, render-
ing the outer planet immediately detectable. Various tests
quantitatively suggest that the velocities should have
revealed the outer planet. The velocities from the Keck and
AAT telescopes could have independently detected the
outer planet, but neither data set revealed it.

We considered various possible reasons that we failed to
detect the outer planet. One possibility is that some interac-
tive resonance between the two planets causes the reflex
velocity of the star to insidiously mimic a single-Keplerian
orbit. That is, perhaps the 10 : 1 ratio of the orbital periods,
along with gravitational interactions, yields a final reflex
velocity that traces a single-Keplerian velocity curve. If so,
we might be fooled into fitting the velocities with such a sim-
ple model. We find this possibility unlikely. As shown byW.
Benz (Mayor et al. 2002) and by Wu & Goldreich (2002),

Fig. 7.—Reduced �2 as a function of outer-planet period for a two-
Keplerian fit to the Keck data. The period, eccentricity, and amplitude
of the inner planet have been frozen at the CORALIE values, as have the
eccentricity and amplitude of the outer planet. No minimum is seen
in the reduced �2 near 29.83 days, the purported period of the outer planet.

Fig. 8.—Best-fit semiamplitude for the outer planet in a double-
Keplerian fit to the Keck data. The period, eccentricity, and amplitude of
the inner planet have been frozen at the values reported by CORALIE, as
well as the eccentricity of the outer planet. The Keck data rule out an outer
planet with a semiamplitude greater than 3 m s�1 for periods between 29
and 31 days.
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TABLE 3

Precision Doppler Planets

Star (HD) Star (Hipparcos) Star Paper Date Received Velocities Telescope

217014 113357 51 Peg Mayor &Queloz 1995 1995a N Elodie

Marcy et al. 1997 1996 Sep 19 Y Lick

117176 65721 70 Vir Marcy & Butler 1996 1996 Jan 22 N Lick

95128b 53721b 47UMa b Butler &Marcy 1996 1996 Feb 15 N Lick

Fischer et al. 2002 2001 Jun 29 Y Lick

120136 67275 � Boo Butler et al. 1997 1996 Aug 12 N Lick

75732b 43587b 55 Cnc b Butler et al. 1997 1996 Aug 12 N Lick

9826b 7513b �And b Butler et al. 1997 1996 Aug 12 N Lick

Butler et al. 1999 1999 Apr 8 Y Lick, AFOE

186408 96895 16 Cyg B Cochran et al. 1997 1996 Nov 21 Y Lick,McDonald

143761 . . . HR5968 Noyes et al. 1997 1997 Apr 18 N AFOE

. . . 113020b GJ 876 b Marcy et al. 1998 1998 Jul 7 N Lick, Keck

Delfosse et al. 1998 1998 Aug 17 N Elodie, CORALIE

Marcy et al. 2001a 2000Dec 27 Y Lick, Keck

187123 97336 . . . Butler et al. 1998 1998 Sep 6 N Keck

Vogt et al. 2000 1999 Nov 15 Y Keck

195019 100970 . . . Fischer et al. 1999 1998 Oct 8 Y Lick

Vogt et al. 2000 1999 Nov 15 Y Keck

217107 113421 HR 8734 Fischer et al. 1999 1998 Oct 8 Y Lick

Vogt et al. 2000 1999 Nov 15 Y Keck

Naef et al. 2001a 2000 Aug 30 Y CORALIE

210277 109378 . . . Marcy et al. 1999 1998Dec 16 Y Keck

Vogt et al. 2000 1999 Nov 15 Y Keck

Naef et al. 2001a 2000 Aug 30 Y CORALIE

168443b 89844b . . . Marcy et al. 1999 1998Dec 16 Y Keck

Marcy et al. 2001b 2000Dec 13 Y Keck

9826c 7513c �And c Butler et al. 1999 1999 Apr 8 Y Lick, AFOE

9826d 7513d �And d Butler et al. 1999 1999 Apr 8 Y Lick, AFOE

13445 10138 GL 86 Queloz et al. 2000 1999 Apr 22 N CORALIE

Butler et al. 2001 2000Dec 25 Y AAT

17051 12653 �Hor Kurster et al. 2000 1999 Oct 19 Y ESO

Naef et al. 2001a 2000 Aug 30 Y CORALIE

Butler et al. 2001 2000Dec 25 Y AAT

10697 8159 . . . Vogt et al. 2000 1999 Nov 15 Y Keck

37124b 26381b . . . Vogt et al. 2000 1999 Nov 15 Y Keck

Butler et al. 2002 2002May 21 Y Keck

222582 116906 . . . Vogt et al. 2000 1999 Nov 15 Y Keck

177830 93746 . . . Vogt et al. 2000 1999 Nov 15 Y Keck

134987 74500 . . . Vogt et al. 2000 1999 Nov 15 Y Keck

Butler et al. 2001 2000Dec 25 Y AAT

209458 108859 . . . Henry et al. 2000 1999 Nov 18 N Keck

Mazeh et al. 2000 1999Dec 3 N Elodie, CORALIE

130322 72339 . . . Udry et al. 2000 1999Dec 2 N CORALIE

75289 43177 . . . Udry et al. 2000 1999Dec 2 N CORALIE

Butler et al. 2001 2000Dec 25 Y AAT

89744 50786 HR 4067 Korzennik et al. 2000 2000 Jan 20 N AFOE, Lick

16141 12048 . . . Marcy et al. 2000 2000Mar 6 Y Keck

46375 31246 . . . Marcy et al. 2000 2000Mar 6 Y Keck

. . . . . . BD�103166 Butler et al. 2000 2000 Apr 21 Y Keck

52265 33719 HR 2622 Butler et al. 2000 2000 Apr 21 Y Keck

Naef et al. 2001a 2000 Aug 30 Y CORALIE

12661b 9683b . . . Fischer et al. 2001 2000 Jul 19 Y Lick, Keck

92788 52409 . . . Fischer et al. 2001 2000 Jul 19 Y Lick, Keck

38529b 27253b . . . Fischer et al. 2001 2000 Jul 19 Y Lick, Keck

22049 16537 �Eri Hatzes et al. 2000 2000 Aug 22 Y McDonald, CFHT, ESO

169830 90485 . . . Naef et al. 2001a 2000 Aug 30 Y CORALIE

1237 1292 GJ 3021 Naef et al. 2001a 2000 Aug 30 Y CORALIE

179949 94645 . . . Tinney et al. 2001 2000 Oct 11 Y AAT,Keck

160691 86796 HR 6585 Butler et al. 2001 2000Dec 25 Y AAT

27442 19921 HR 1355 Butler et al. 2001 2000Dec 25 Y AAT

. . . 113020c GJ 876 c Marcy et al. 2001a 2000Dec 27 Y Lick, Keck

80606 45982 . . . Naef et al. 2001b 2001May 29 Y CORALIE

95128c 53721c 47UMa c Fischer et al. 2002 2001 Jun 29 Y Lick

28185 20723 . . . Santos, Israelian, &Mayor 2001 2001 Jul 30 Y CORALIE

213240 111143 . . . Santos et al. 2001 2001 Jul 30 Y CORALIE



the gravitational interactions yield a temporal evolution of
the orbits on a timescale of�1000 yr rather than a few years.
Thus, we expect the outer planet, if it exists, to remain in a
coherent orbit during the few year duration of the present
observations. Moreover, the 10 : 1 ratio of the two periods
does not constitute a powerful Fourier harmonic from
which a single Keplerian can be constructed (as is the case
with a 2 : 1 ratio of periods).

We remain puzzled by the discrepancy between the
reported CORALIE results and the velocities we have
obtained with Keck/HIRES and AAT/UCLES.

Of the 75 extrasolar planet candidates (M sin i <
13MJUP) announced from precision Doppler surveys,12 a
total of 57 have been published in refereed journals. These
planets are listed in Table 3, which also notes the telescope
from which the data originate and whether the actual Dop-
pler velocities are publicly available. Refereed precision
velocity confirmations are also included. Substellar candi-
dates found by other techniques such as astrometry and
low-precision Doppler velocities are not included. An addi-
tional four planet candidates have been announced in con-
ference proceedings13 (Queloz et al. 2002; Sivan et al. 2002).
Doppler velocity measurements are not available for candi-
dates that have only been published in conference proceed-
ings. An additional 12 claimed Doppler planets, all of which
were announced more than 1 year ago, have not been
submitted to either a conference proceeding or a refereed
journal.

While the discovery of extrasolar planets has become
seemingly commonplace over the past 6 years, we still con-
sider the detection of planets orbiting other stars as extraor-
dinary, and as such worthy of the dictum, ‘‘ extraordinary
claims require extraordinary evidence.’’ Publishing discov-
ery data in a refereed journal remains a crucial part of the
process, although this is not in itself sufficient to establish
the credibility of a planet claim. It remains extremely likely
that at least a handful of the reported planets do not in fact
exist. Multiple confirmation both by independent precision
Doppler teams and by completely independent techniques
remain the only means by which to ensure the veracity of
extrasolar planet claims.
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