388 research outputs found

    Phase Stability in heavy f-Electron Metals from First-Principles Theory

    Get PDF
    The structural phase stability of heavy f-electron metals is studied by means of density-functional theory (DFT). These include temperature-induced transitions in plutonium metal as well as pressure-induced transitions in the trans-plutonium metals Am, Cm, Bk, and Cf. The early actinides (Th-Np) display phases that could be rather well understood from the competition of a crystal-symmetry breaking mechanism (Peierls distortion) of the 5f states and electrostatic forces, while for the trans-plutonium metals (Am-Cf) the ground-state structures are governed by 6d bonding. We show in this paper that new physics is needed to understand the phases of the actinides in the volume range of about 15-30 {angstrom}{sup 3}. At these volumes one would expect, from theoretical arguments made in the past, to encounter highly complex crystal phases due to a Peierls distortion. Here we argue that the symmetry reduction associated with spin polarization can make higher symmetry phases competitive. Taking this into account, DFT is shown to describe the well-known phase diagram of plutonium and also the recently discovered complex and intriguing high-pressure phase diagrams of Am and Cm. The theory is further applied to investigate the behaviors of Bk and Cf under compression

    Écologie urbaine : environnement et autonomie

    Get PDF

    The corticotrophin-releasing factor/urocortin system regulates white fat browning in mice through paracrine mechanisms

    Get PDF
    Objectives: The corticotrophin-releasing factor (CRF)/urocortin system is expressed in the adipose tissue of mammals, but its functional role in this tissue remains unknown. Methods: Pharmacological manipulation of the activity of CRF receptors, CRF1 and CRF2, was performed in 3T3L1 white pre-adipocytes and T37i brown pre-adipocytes during in vitro differentiation. The expression of genes of the CRF/urocortin system and of markers of white and brown adipocytes was evaluated along with mitochondrial biogenesis and cellular oxygen consumption. Metabolic evaluation of corticosterone-deficient or supplemented Crhr1-null (Crhr1−/−) mice and their wild-type controls was performed along with gene expression analysis carried out in white (WAT) and brown (BAT) adipose tissues. Results: Peptides of the CRF/urocortin system and their cognate receptors were expressed in both pre-adipocyte cell lines. In vitro pharmacological studies showed an inhibition of the expression of the CRF2 pathway by the constitutive activity of the CRF1 pathway. Pharmacological activation of CRF2 and, to a lesser extent, inhibition of CRF1 signaling induced molecular and functional changes indicating transdifferentiation of white pre-adipocytes and differentiation of brown pre-adipocytes. Crhr1−/− mice showed increased expression of CRF2 and its agonist Urocortin 2 in adipocytes that was associated to brown conversion of WAT and activation of BAT. Crhr1−/− mice were resistant to diet-induced obesity and glucose intolerance. Restoring physiological circulating corticosterone levels abrogated molecular changes in adipocytes and the favorable phenotype of Crhr1−/− mice. Conclusions: Our findings suggest the importance of the CRF2 pathway in the control of adipocyte plasticity. Increased CRF2 activity in adipocytes induces browning of WAT, differentiation of BAT and is associated with a favorable metabolic phenotype in mice lacking CRF1. Circulating corticosterone represses CRF2 activity in adipocytes and may thus regulate adipocyte physiology through the modulation of the local CRF/urocortin system. Targeting CRF receptor signaling specifically in the adipose tissue may represent a novel approach to tackle obesity

    The 5f localization/delocalization in square and hexagonal americium monolayers: A FP-LAPW electronic structure study

    Full text link
    The electronic and geometrical properties of bulk americium and square and hexagonal americium monolayers have been studied with the full-potential linearized augmented plane wave (FP-LAPW) method. The effects of several common approximations are examined: (1) non-spin polarization (NSP) vs. spin polarization (SP); (2) scalar-relativity (no spin-orbit coupling (NSO)) vs. full-relativity (i.e., with spin-orbit (SO) coupling included); (3) local-density approximation (LDA) vs. generalized-gradient approximation (GGA). Our results indicate that both spin polarization and spin orbit coupling play important roles in determining the geometrical and electronic properties of americium bulk and monolayers. A compression of both americium square and hexagonal monolayers compared to the americium bulk is also observed. In general, the LDA is found to underestimate the equilibrium lattice constant and give a larger total energy compared to the GGA calculations. While spin orbit coupling shows a similar effect on both square and hexagonal monolayer calculations regardless of the model, GGA versus LDA, an unusual spin polarization effect on both square and hexagonal monolayers is found in the LDA results as compared with the GGA results. The 5f delocalization transition of americium is employed to explain our observed unusual spin polarization effect. In addition, our results at the LDA level of theory indicate a possible 5f delocalization could happen in the americium surface within the same Am II (fcc crystal structure) phase, unlike the usually reported americium 5f delocalization which is associated with crystal structure change. The similarities and dissimilarities between the properties of an Am monolayer and a Pu monolayer are discussed in detail.Comment: 22 pages, 8 figure

    Synthetic microplastic abundance and composition along a longitudinal gradient traversing the subtropical gyre in the North Atlantic Ocean.

    Get PDF
    Plastic pollution has been reported in the North Atlantic Ocean since the 1970s, yet limited data over subsequent decades pose challenges when assessing spatio-temporal trends in relation to global leakages and intervention strategies. This study quantified microplastics within the upper ocean along a longitudinal transect of the North Atlantic and its subtropical gyre. Microplastics were sampled from surface and subsurface (-25 m) water using a manta trawl and NIKSIN bottle respectively. The surface water polymer community varied significantly between geographic positions ('inshore', 'gyre', 'open ocean'), and was significantly influenced by fragment quantity. Compared to other positions, the North Atlantic gyre was associated with high concentrations of polyethylene, polypropylene, acrylic and polyamide fragments. Subsurface water was dominated by polyamide and polyester fibres. Backtracked 2-year Lagrangian simulations illustrated connectivity patterns. Continued monitoring of microplastics throughout the water column of the North Atlantic Ocean is required to address knowledge gaps and assess spatio-temporal trends

    Possible common central pathway for resistin and insulin in regulating food intake.

    Get PDF
    Aim: Adipose tissue has been the object of intense research in the field of obesity and diabetes diseases in the last decade. Examination of adipocyte-secreted peptides led to the identification of a unique polypeptide, resistin (RSTN), which has been suggested as a link between obesity and diabetes. RSTN plays a clearly documented role in blocking insulin (INS)-induced hypoglycaemia. As brain injection of INS affects feeding behaviour, we studied the possible interaction between INS and RSTN in food-deprived rats, measuring effects on food intake. In addition, we examined how RSTN might affect neuropeptide Y (NPY)-induced feeding, as studies have shown that rat RSTN can interfere with the NPY system. Methods: Overnight food-deprived rats were injected into the third brain ventricle (3V) with either INS (10 or 20 mUI), RSTN (0.1–0.4 nmol/rat), or saline before access to food. Another group of rats was injected into the 3V with RSTN alone, NPY alone or RSTN plus NPY. Their food intake and body weight were measured. Results: Our results confirm the hypophagic effect of RSTN on food deprivation-induced food intake, and more importantly, show that RSTN neither potentiates nor blocks the effects of INS on food intake, but does reduce the hyperphagic effect of NPY. Conclusion:  The observation that RSTN does not modify feeding INS-induced hypophagia, but does influence NPY-induced feeding, points to the possibility that RSTN may be involved in control of food intake through an NPY-ergic mechanism as INS

    Brain Glucagon-Like Peptide-1 Regulates Arterial Blood Flow, Heart Rate, and Insulin Sensitivity

    Get PDF
    OBJECTIVE— To ascertain the importance and mechanisms underlying the role of brain glucagon-like peptide (GLP)-1 in the control of metabolic and cardiovascular function. GLP-1 is a gut hormone secreted in response to oral glucose absorption that regulates glucose metabolism and cardiovascular function. GLP-1 is also produced in the brain, where its contribution to central regulation of metabolic and cardiovascular homeostasis remains incompletely understood

    Microstructural differences in the thalamus and thalamic radiations in the congenitally deaf

    Get PDF
    There is evidence of both crossmodal and intermodal plasticity in the deaf brain. Here, we investigated whether sub-cortical plasticity, specifically of the thalamus, contributed to this reorganisation. We contrasted diffusion weighted magnetic resonance imaging data from 13 congenitally deaf and 13 hearing participants, all of whom had learnt British Sign Language after 10 years of age. Connectivity based segmentation of the thalamus revealed changes to mean and radial diffusivity in occipital and frontal regions, which may be linked to enhanced peripheral visual acuity, and differences in how visual attention is deployed in the deaf group. Using probabilistic tractography, tracts were traced between the thalamus and its cortical targets, and microstructural measurements were extracted from these tracts. Group differences were found in microstructural measurements of occipital, frontal, somatosensory, motor and parietal thalamo-cortical tracts. Our findings suggest there is sub-cortical plasticity in the deaf brain, and that white matter alterations can be found throughout the deaf brain, rather than being restricted to, or focussed in auditory cortex
    corecore