29 research outputs found

    Synthesis of a boronic acid anhydride based ligand and its application in beryllium coordination

    Get PDF
    The synthesis of a boronic acid anhydride‐based ligand containing one three‐ and one four‐coordinated boron atom is presented. This ligand was successfully employed as a tridentate κ¹N,κ²O‐ligand in the coordination of beryllium chloride and both the ligand and the resulting complex have been structurally characterized. While the boron‐element separations are within the typical range of related homo‐nuclear compounds, the corresponding beryllium‐element distances are rather long, suggesting unexpectedly high electron density at the beryllium center. Incorporation of a beryllium atom in a six‐membered ring causes no more distortion than the corresponding boron atom, suggesting that analogous ligand systems could be used in boron and beryllium coordination chemistry. The generated hetero‐tri‐nuclear complex enables the direct comparison of bond lengths and angles at beryllium and boron atoms in similar coordination environments and can act as a monomolecular model for beryllium borates

    The chemistry and metallurgy of beryllium

    Get PDF
    Beryllium (Be), the first of the group 2 alkali-earth ele­ments, is a silver-gray metal possessing an unmatched combination of physical and mechanical properties, which are vital for a variety of applications that offer tre­mendous benefits to society. It is the lightest workable metal, only two-thirds the weight of aluminium, yet it has six times the stiffness of steel, making it an ideal mate­rial for stiffness-dependent and weight-limited applica­tions. The chart in Fig. 1 illustrates how much beryllium outclasses other engineering materials with respect to thermal conductivity and dimensional stability (ability of a material to retain its uniformity under stress measured as the Young's modulus to density ratio). These unique properties of beryllium translate into performance en­hancement in the end product, for instance the James Webb Space Telescope (JWST: see Fig. 2). The next gen­eration James Webb Space Telescope, scheduled to be launched in 2018 as NASA's replacement for the Hubble telescope, will utilise a 6.5 meter wide beryllium mirror to reveal images of distant galaxies 200 times beyond what has ever been sighted

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Transition-metal dihalocarbene complexes

    No full text

    Porphyrin complexes of the period 6 main group and late transition metals.

    No full text
    International audienceMetalloporphyrin complexes of the period six metals gold, mercury, thallium, lead and bismuth are often overlooked in favour of their lighter congeners. These complexes exhibit unusual coordination geometries, prominently featuring the metal centre residing out the porphyrin plane. Not only are these compounds chemically interesting, but several applications for these complexes are beginning to emerge. Gold and bismuth porphyrins have medicinal applications including novel chemotherapeutics and sensitizers for α-radiotherapy, while gold porphyrins have applications in materials chemistry and catalysis. This perspective serves to highlight trends in the synthesis and structure of these heavy metal complexes as well as illustrate the considerations necessary for rationally designing elaborate porphyrin architectures

    Ab initio molecular dynamics investigation of beryllium complexes

    Get PDF
    Structures of aqueous [Be(H₂O)₄]²⁺, its outer-sphere and inner-sphere complexes with F⁻, Cl⁻, and SO₄²⁻, and dinuclear complexes with a [Be₂(κ-OH)(κ-SO₄)]⁺ core have been studied through Car–Parrinello molecular dynamics (CPMD) simulations with the BLYP functional. According to constrained CPMD/BLYP simulations and pointwise thermodynamic integration, the free energy of deprotonation of [Be(H₂O)₄]²⁺ and its binding free energy with F⁻ are 9.6 and −6.2 kcal/mol, respectively, in good accord with available experimental data. The computed activation barriers for replacing a water ligand in [Be(H₂O)₄]²⁺ with F⁻ and SO₄²⁻, 10.9 and 13.6 kcal/mol, respectively, are also in good qualitative agreement with available experimental data. These ligand-substitution reactions are indicated to follow associative interchange mechanisms with backside (SN2-like) attack of the anion relative to the aquo ligand it is displacing. Outperforming static density functional theory computations of the salient kinetic and thermodynamic quantities involving simple polarizable continuum solvent models, CPMD simulations are validated as a promising tool for studying the structures and speciation of beryllium complexes in aqueous solution

    Tetrahedral Pegs in Square Holes: Stereochemistry of Diboron Porphyrazines and Phthalocyanines

    No full text
    The first examples of diboron complexes of the tetrapyrroles octaethylporphyrazine (OEPz) and 2,9,16,23‐tetra‐t‐butyl‐phthalocyanine (Pc) are reported, counterpoints to the better known monoboron tripyrroles, subporphyrazine and subphthalocyanine. Two stereochemical possibilities are observed, with cisoid‐B2OF2(OEPz), both cisoid‐B2OPh2(OEPz) and transoid‐B2OPh2(OEPz), transoid‐B2OF2(Pc) and cisoid‐B2OPh2(Pc) having been isolated and characterised, including structure determinations for the OEPz complexes. This variation in stereochemistry, which can be extended to include the previously reported transoid‐B2OF2(porphyrin), cisoid‐[B2OF2(corrole)]−, and both transoid‐ and cisoid‐B2OF2(calixphyrin), prompted a wider DFT study to elucidate the factors influencing the stereochemical preferences. This shows that the cisoid/transoid preference is correlated to the ease with which the macrocycle accommodates a rectangularly distorted N4 cavity.This work was supported by project 262 229 of the Research Council of Norway (A.G.), and the South African National Research Foundation (grant numbers 113327 and 96111) and the Central Research Fund of the University of the Free State, Bloemfontein, South Africa (J.C.)
    corecore