512 research outputs found

    Nuclear models on a lattice

    Get PDF
    We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.Comment: 4 pages - 7 figures ; Invited talk to QCD 05: 12th International QCD Conference, 4-9 Jul 2005, Montpellier, France ; To appear in Nucl. Phys. B (Proc. Suppl.

    Remarks on sum rules in the heavy quark limit of QCD

    Get PDF
    We underline a problem existing in the heavy quark limit of QCD concerning the rates of semileptonic B decays into P-wave DJ(j)D_J(j) mesons, where j=12j = {1 \over 2} (wide states) or j=32j = {3 \over 2} (narrow states). The leading order sum rules of Bjorken and Uraltsev suggest Γ[Bˉ→D0,1(12)ℓν]≪Γ[Bˉ→D1,2(32)ℓν]\Gamma [ \bar{B} \to D_{0,1} ({1 \over 2}) \ell \nu ] \ll \Gamma [ \bar{B} \to D_{1,2} ({3 \over 2}) \ell \nu ], in contradiction with experiment. The same trend follows also from a sum rule for the subleading 1/mQ1/m_Q curent matrix element correction ξ3(1)\xi_3(1). The problem is made explicit in relativistic quarks models \`a la Bakamjian and Thomas, that give a transparent physical interpretation of the latter as due, not to a L⋅SL \cdot S force, but to the Wigner rotation of the light quark spin. We point out moreover that the selection rule for decay constants of j=32j = {3 \over 2} states, f3/2=0f_{3/2} = 0, predicts, assuming the model of factorization, the opposite hierarchy Γ[Bˉ→Dˉs1,2(32)D(∗)]≪Γ[Bˉ→Dˉs0,1(12)D(∗)]\Gamma [ \bar{B} \to \bar{D}_{s_{1,2}} ({3 \over 2}) D^{(*)} ] \ll \Gamma [ \bar{B} \to \bar{D}_{s_{0,1}} ({1 \over 2}) D^{(*)} ].Comment: Contribution to the International Europhysics Conference on HEP, Budapest, July 2001 (presented by L. Oliver); 5 page

    Instanton traces in lattice gluon correlation functions

    Full text link
    Strong coupling constant computed in Landau gauge and MOM renormalization scheme from lattice two and three gluon Green Functions exhibits an unexpected behavior in the deep IR, showing a maximum value around 1GeV1 {\rm GeV}. We analise this coupling below this maximum within a semiclassical approach, were gluon degrees of freedom at very low energies are described in terms of the classical solutions of the lagrangian, namely instantons. We provide some new results concerning the relationship between instantons and the low energy dynamics of QCD, by analising gluon two- and three-point Green functions separately and with the help of a cooling procedure to eliminate short range correlations.Comment: 4 pages, talk given at XXXX Rencontres de Moriond on QCD and Hadronic Interactions, La Thuile (Italy

    B_s-\bar{B_s} mixing with a chiral light quark action

    Full text link
    We study the Bs0−Bs0ˉB^0_s-\bar{B^0_s} mixing amplitude in Standard Model by computing the relevant hadronic matrix element in the static limit of lattice HQET with the Neuberger light quark action. In the quenched approximation, and after matching to the MSˉ\bar{\rm MS} scheme in QCD, we obtain BBsMSˉ(mb)=0.940(16)(22)B^{\bar{\rm MS}}_{B_s}(m_b)=0.940(16)(22).Comment: 6 pages, 3 figures, talk presented at Lattice 2005 (Heavy quark physics

    The Infrared Behaviour of the Pure Yang-Mills Green Functions

    Full text link
    We study the infrared behaviour of the pure Yang-Mills correlators using relations that are well defined in the non-perturbative domain. These are the Slavnov-Taylor identity for three-gluon vertex and the Schwinger-Dyson equation for ghost propagator in the Landau gauge. We also use several inputs from lattice simulations. We show that lattice data are in serious conflict with a widely spread analytical relation between the gluon and ghost infrared critical exponents. We conjecture that this is explained by a singular behaviour of the ghost-ghost-gluon vertex function in the infrared. We show that, anyhow, this discrepancy is not due to some lattice artefact since lattice Green functions satisfy the ghost propagator Schwinger-Dyson equation. We also report on a puzzle concerning the infrared gluon propagator: lattice data seem to favor a constant non vanishing zero momentum gluon propagator, while the Slavnov-Taylor identity (complemented with some regularity hypothesis of scalar functions) implies that it should diverge.Comment: 25 pages, 7 figures; replaced version with some references adde and an enlarged discussion of the non-renormalization theorem; second replacement with improved figures and added reference

    Asymptotic behavior of the ghost propagator in SU3 lattice gauge theory

    Full text link
    We study the asymptotic behavior of the ghost propagator in the quenched SU(3) lattice gauge theory with Wilson action. The study is performed on lattices with a physical volume fixed around 1.6 fm and different lattice spacings: 0.100 fm, 0.070 fm and 0.055 fm. We implement an efficient algorithm for computing the Faddeev-Popov operator on the lattice. We are able to extrapolate the lattice data for the ghost propagator towards the continuum and to show that the extrapolated data on each lattice can be described up to four-loop perturbation theory from 2.0 GeV to 6.0 GeV. The three-loop values are consistent with those extracted from previous perturbative studies of the gluon propagator. However the effective \Lambda_{\ms} scale which reproduces the data does depend strongly upon the order of perturbation theory and on the renormalization scheme used in the parametrization. We show how the truncation of the perturbative series can account for the magnitude of the dependency in this energy range. The contribution of non-perturbative corrections will be discussed elsewhere.Comment: 26 pages, 7 figure

    Three-loop beta function and non-perturbative αs\alpha_s in asymmetric momentum scheme

    Full text link
    We determine the three-loop coefficient of the beta function in the asymmetric momentum subtraction scheme in Landau gauge. This scheme is convenient for lattice studies of \alpha_s, the running coupling constant of QCD. We present high statistics lattice results for \alpha_s in the SU(3) Yang-Mills theory without quark, compare with the three-loop running and extract the value of the corresponding \Lambda_\msbar parameter. We estimate the systematic error coming from four-loop terms. We obtain the result: \Lambda_\msbar = 295 (5) (15) {a^{-1}(\beta=6.0) \over 1.97 GeV} MeV.Comment: 9 pages, LaTeX with two figures. The final analysis has been revisited to include an estimation of the systematic error coming from higher-order term

    Indirect lattice evidence for the Refined Gribov-Zwanziger formalism and the gluon condensate ⟨A2⟩\braket{A^2} in the Landau gauge

    Get PDF
    We consider the gluon propagator D(p2)D(p^2) at various lattice sizes and spacings in the case of pure SU(3) Yang-Mills gauge theories using the Landau gauge fixing. We discuss a class of fits in the infrared region in order to (in)validate the tree level analytical prediction in terms of the (Refined) Gribov-Zwanziger framework. It turns out that an important role is played by the presence of the widely studied dimension two gluon condensate ⟨A2⟩\braket{A^2}. Including this effect allows to obtain an acceptable fit up to 1 \'{a} 1.5 GeV, while corroborating the Refined Gribov-Zwanziger prediction for the gluon propagator. We also discuss the infinite volume extrapolation, leading to the estimate D(0)=8.3±0.5GeV−2D(0)=8.3\pm0.5\text{GeV}^{-2}. As a byproduct, we can also provide the prediction ⟨g2A2⟩≈3GeV2\braket{g^2 A^2}\approx 3\text{GeV}^2 obtained at the renormalization scale μ=10GeV\mu=10\text{GeV}.Comment: 17 pages, 10 figures, updated version, accepted for publication in Phs.Rev.

    Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    Get PDF
    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot"
    • …
    corecore