409 research outputs found

    Destination shapes antibiotic resistance gene acquisitions, abundance increases, and diversity changes in Dutch travelers

    Get PDF
    BACKGROUND: Antimicrobial-resistant bacteria and their antimicrobial resistance (AMR) genes can spread by hitchhiking in human guts. International travel can exacerbate this public health threat when travelers acquire AMR genes endemic to their destinations and bring them back to their home countries. Prior studies have demonstrated travel-related acquisition of specific opportunistic pathogens and AMR genes, but the extent and magnitude of travel\u27s effects on the gut resistome remain largely unknown. METHODS: Using whole metagenomic shotgun sequencing, functional metagenomics, and Dirichlet multinomial mixture models, we investigated the abundance, diversity, function, resistome architecture, and context of AMR genes in the fecal microbiomes of 190 Dutch individuals, before and after travel to diverse international locations. RESULTS: Travel markedly increased the abundance and α-diversity of AMR genes in the travelers\u27 gut resistome, and we determined that 56 unique AMR genes showed significant acquisition following international travel. These acquisition events were biased towards AMR genes with efflux, inactivation, and target replacement resistance mechanisms. Travel-induced shaping of the gut resistome had distinct correlations with geographical destination, so individuals returning to The Netherlands from the same destination country were more likely to have similar resistome features. Finally, we identified and detailed specific acquisition events of high-risk, mobile genetic element-associated AMR genes including qnr fluoroquinolone resistance genes, bla CONCLUSIONS: Our results show that travel shapes the architecture of the human gut resistome and results in AMR gene acquisition against a variety of antimicrobial drug classes. These broad acquisitions highlight the putative risks that international travel poses to public health by gut resistome perturbation and the global spread of locally endemic AMR genes

    Enteric dysbiosis and fecal calprotectin expression in premature infants.

    Get PDF
    BackgroundPremature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC).MethodsStool samples were collected from very-low-birth weight (VLBW) infants at ≤2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay.ResultsWe enrolled 45 VLBW infants (gestation 27.9 ± 2.2 weeks, birth weight 1126 ± 208 g) and obtained stool samples at 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. FC was positively correlated with the genus Klebsiella (r = 0.207, p = 0.034) and its dominant amplicon sequence variant (r = 0.290, p = 0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance.ConclusionIn premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution

    Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis

    Get PDF
    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics

    Mode of Delivery and Asthma at School Age in 9 European Birth Cohorts

    Get PDF
    Evidence on the association between mode of delivery and asthma at school age is inconclusive. We assessed the associations between specific modes of delivery and asthma in children from 9 European birth cohorts that enrolled participants between 1996 and 2006. Cohort-specific crude and adjusted risk ratios for asthma at ages 5–9 years were calculated using Poisson regression models and pooled. A sensitivity analysis was carried out in children born at term to reduce confounding due to perinatal factors. The study included 67,613 participants. Cohortspecific rates of cesarean delivery varied from 9.4% to 37.5%. Cesarean delivery, as opposed to vaginal delivery, was associated with an increased risk of asthma (adjusted risk ratio (aRR) = 1.22, 95% confidence interval (CI): 1.02, 1.46). Compared with spontaneous vaginal delivery, the adjusted risk ratio was 1.33 (95% CI: 1.02, 1.75) for elective cesarean delivery, 1.07 (95% CI: 0.94, 1.22) for emergency cesarean delivery, and 0.97 (95% CI: 0.84, 1.12) for operative vaginal delivery. In children born at term, the associations were strengthened only for elective cesarean delivery (aRR = 1.49, 95% CI: 1.13, 1.97). The large sample size allowed analysis of the associations between specific modes of delivery and asthma at school age. The increased risk of asthma associated with elective cesarean delivery, especially among children born at term, is relevant in counteracting the increasing use of this procedure, which is often performed without a clear medical indication.This work was supported by the European Community’s Seventh Framework Programme (FP7/2009–2013) under a grant agreement (grant 241604) and by the University of Turin and the San Paolo Foundation (Turin, Italy). Data collection was funded and the study teams of all participating birth cohorts were supported by local and/or national research organizations

    Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Get PDF
    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Import and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study

    Get PDF
    BACKGROUND: International travel contributes to the dissemination of antimicrobial resistance. We investigated the acquisition of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) during international travel, with a focus on predictive factors for acquisition, duration of colonisation, and probability of onward transmission. METHODS: Within the prospective, multicentre COMBAT study, 2001 Dutch travellers and 215 non-travelling household members were enrolled. Faecal samples and questionnaires on demographics, illnesses, and behaviour were collected before travel and immediately and 1, 3, 6, and 12 months after return. Samples were screened for the presence of ESBL-E. In post-travel samples, ESBL genes were sequenced and PCR with specific primers for plasmid-encoded β-lactamase enzymes TEM, SHV, and CTX-M group 1, 2, 8, 9, and 25 was used to confirm the presence of ESBL genes in follow-up samples. Multivariable regression analyses and mathematical modelling were used to identify predictors for acquisition and sustained carriage, and to determine household transmission rates. This study is registered with ClinicalTrials.gov, number NCT01676974. FINDINGS: 633 (34·3%) of 1847 travellers who were ESBL negative before travel and had available samples after return had acquired ESBL-E during international travel (95% CI 32·1-36·5), with the highest number of acquisitions being among those who travelled to southern Asia in 136 of 181 (75·1%, 95% CI 68·4-80·9). Important predictors for acquisition of ESBL-E were antibiotic use during travel (adjusted odds ratio 2·69, 95% CI 1·79-4·05), traveller's diarrhoea that persisted after return (2·31, 1·42-3·76), and pre-existing chronic bowel disease (2·10, 1·13-3·90). The median duration of colonisation after travel was 30 days (95% CI 29-33). 65 (11·3%) of 577 remained colonised at 12 months. CTX-M enzyme group 9 ESBLs were associated with a significantly increased risk of sustained carriage (median duration 75 days, 95% CI 48-102, p=0·0001). Onward transmission was found in 13 (7·7%) of 168 household members. The probability of transmitting ESBL-E to another household member was 12% (95% CI 5-18). INTERPRETATION: Acquisition and spread of ESBL-E during and after international travel was substantial and worrisome. Travellers to areas with a high risk of ESBL-E acquisition should be viewed as potential carriers of ESBL-E for up to 12 months after return. FUNDING: Netherlands Organisation for Health Research and Development (ZonMw)

    Prevalence and risk factors for carriage of ESBL-producing Enterobacteriaceae in a population of Dutch travellers: A cross-sectional study

    Get PDF
    Background: We investigated prevalence and predictive factors for ESBL-E carriage in a population of mostly travellers prior to their travel (n = 2216). In addition, we examined ESBL genotype before travel and compared these to returning travellers. Method: A questionnaire and faecal sample were collected before travel, and a second faecal sample was collected immediately after travel. Faecal samples were analysed for ESBL-E, with genotypic characterization by PCR and sequencing. Risk factors for ESBL-E carriage prior to travel were identified by logistic regression analyses. Results: Before travel, 136 participants (6.1%) were colonized with ESBL-E. Antibiotic use in the past three months (ORadjusted 2.57; 95% CI 1.59–4.16) and travel outside of Europe in the past year (1.92, 1.28–2.87) were risk factors for ESBL-E colonisation prior to travel. Travel outside of Europe carried the largest attributable risk (39.8%). Prior to travel 31.3% (40/128) of participants carried blaCTX-M 15 and 21.9% (28/128) blaCTX-M 14/18. In returning travellers 633 acquired ESBL-E of who 53.4% (338/633) acquired blaCTX-M 15 and 17.7% (112/633) blaCTX-M 14/18. Conclusion: In our population of Dutch travellers we found a pre-travel ESBL-E prevalence of 6.1%. Prior to travel, previous antibiotic use and travel outside of Europe were the strongest independent predictors

    On decoding and rewriting genomes: a psychoanalytical reading of a scientific revolution

    Get PDF
    In various documents the view emerges that contemporary biotechnosciences are currently experiencing a scientific revolution: a massive increase of pace, scale and scope. A significant part of the research endeavours involved in this scientific upheaval is devoted to understanding and, if possible, ameliorating humankind: from our genomes up to our bodies and brains. New developments in contemporary technosciences, such as synthetic biology and other genomics and “post-genomics” fields, tend to blur the distinctions between prevention, therapy and enhancement. An important dimension of this development is “biomimesis”: i.e. the tendency of novel technologies and materials to mimic or plagiarize nature on a molecular and microscopic level in order to optimise prospects for the embedding of technological artefacts in natural systems such as human bodies and brains. In this paper, these developments are read and assessed from a psychoanalytical perspective. Three key concepts from psychoanalysis are used to come to terms with what is happening in research laboratories today. After assessing the general profile of the current revolution in this manner, I will focus on a particular case study, a line of research that may serve as exemplification of the vicissitudes of contemporary technosciences, namely viral biomaterials. Viral life forms can be genetically modified (their genomes can be rewritten) in such a manner that they may be inserted in human bodies in order to produce substances at specific sites such as hormones (testosterone), neurotransmitters (dopamine), enzymes (insulin) or bone and muscle tissue. Notably, certain target groups such as top athletes, soldiers or patients suffering from degenerative diseases may become the pioneers serving as research subjects for novel applications. The same technologies can be used for various purposes ranging from therapy up to prevention and enhancement
    corecore