256 research outputs found

    Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    Full text link
    Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs), for properties in Action-Restricted CTL (ARCTL), an extension of CTL quantifying paths restricted in terms of actions labeling transitions of the model. These counter-examples have a branching structure that supports more complete description of property violations. Elements of these counter-examples are annotated with parts of the property to give a better understanding of their structure. Visualization and browsing of these richer counter-examples become a critical issue, as the number of branches and states can grow exponentially for deeply-nested properties. This paper formally defines the structure of TLACEs, characterizes adequate counter-examples w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been implemented, first by extending the NuSMV model checker to generate and export branching counter-examples, secondly by providing an interactive graphical interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    SMT-Solvers in Action: Encoding and Solving Selected Problems in NP and EXPTIME

    Get PDF
    We compare the efficiency of seven modern SMT-solvers for several decision and combinatorial problems: the bounded Post correspondence problem (BPCP), the extended string correction problem (ESCP), and the Towers of Hanoi (ToH) of exponential solutions. For this purpose, we define new original reductions to SMT for all the above problems, and show their complexity. Our extensive experimental results allow for drawing quite interesting conclusions on efficiency and applicability of SMT-solvers depending on the theory used in the encoding

    Nat Struct Mol Biol

    Get PDF
    Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation

    A Logic with Reverse Modalities for History-preserving Bisimulations

    Full text link
    We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of (1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within a particular true-concurrency model, namely stable configuration structures. We furthermore show how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation (when autoconcurrency is allowed), as far as we are aware. We also present characteristic formulas which characterise individual structures with respect to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Automata for true concurrency properties

    Get PDF
    We present an automata-theoretic framework for the model checking of true concurrency properties. These are specified in a fixpoint logic, corresponding to history-preserving bisimilarity, capable of describing events in computations and their dependencies. The models of the logic are event structures or any formalism which can be given a causal semantics, like Petri nets. Given a formula and an event structure satisfying suitable regularity conditions we show how to construct a parity tree automaton whose language is non-empty if and only if the event structure satisfies the formula. The automaton, due to the nature of event structure models, is usually infinite. We discuss how it can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. In order to show the applicability of the approach, we discuss how it instantiates to finite safe Petri nets. As a proof of concept we provide a model checking tool implementing the technique

    Labeled EF-Tus for rapid kinetic studies of pretranslocation complex formation

    Get PDF
    The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii) the effects of the misreading-inducing antibiotics streptomycin and paromomycin on tRNA selection at the A-site, and (iii) how strengthening the binding of aa-tRNA to EF-Tu affects the rate of EF-Tu movement away from L11 on the ribosome. These FRET assays have the potential to be adapted for high throughput screening of ribosomal antibiotics

    Mechanism of eIF6 release from the nascent 60S ribosomal subunit.

    Get PDF
    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Supported by a Federation of European Biochemical Societies Long term Fellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), the Medical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK), Wellcome Trust strategic award to the Cambridge Institute for Medal Research [100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHR Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.311
    • …
    corecore