3,081 research outputs found
An anisotropic microsphere-based approach for fiber orientation adaptation in soft tissue
Evolutionary processes in biological tissue, such as adaptation or remodeling, represent an enterprising area of research. In this paper, we present a multiscale model for the remodeling of fibered structures, such as bundles of collagen fibrils. With this aim, we introduce a von Mises statistical distribution function to account for the directional dispersion of the fibrils, and we remodel the underlying fibrils by changing their orientation. To numerically compute this process, we make use of the microsphere approach, which provides a useful multiscale tool for homogenizing the microstructure behavior, related to the fibrils of the bundle, in the macroscale of the problem. The results show how the fibrils respond to the stimulus by reorientation of their structure. This process leads to a stiffer material eventually reaching a stationary state. These results are in agreement with those reported in the literature, and they characterize the adaptation of biological tissue to external stimuli.Peer ReviewedPostprint (author's final draft
Hierarchical micro-adaptation of biological structures by mechanical stimuli
Remodeling and other evolving processes such as growth or morphogenesis are key factors in the evolution of biological tissue in response to both external and internal epigenetic stimuli. Based on the description of these processes provided by Taber, 1995 and Humphrey et al., 2002 for three important adaptation processes, remodeling, morphogenesis and growth (positive and negative), we shall consider the latter as the increase/decrease of mass via the increase/decrease of the number or size of cells, leading to a change in the volume of the organ. The work of Rodriguez et al. (1994) used the concept of natural configuration previously introduced by Skalak et al. (1982) to formulate volumetric growth. Later, Humphrey et al. (2002) proposed a constrained-mixture theory where changes in the density and mass of different constituents were taken into account. Many other works about biological growth have been presented in recent years, see e.g. Imatani and Maugin, 2002, Garikipati et al., 2004, Gleason and Humphrey, 2004, Menzel, 2004, Amar et al., 2005, Ganghoffer et al., 2005, Ateshian, 2007, Goriely et al., 2007, Kuhl et al., 2007, Ganghoffer, 2010a, Ganghoffer, 2010b and Goktepe et al., 2010. Morphogenesis is associated to changes in the structure shape (Taber, 1995 and Taber, 2009) while remodeling denotes changes in the tissue microstructure via the reorganization of the existing constituents or the synthesis of new ones with negligible volume change. All these processes involve changes in material properties. Although remodeling and growth can, and usually do, occur simultaneously, there are some cases where these processes develop in a decoupled way. For example, Stopak and Harris (1982) reported some experimental results showing remodeling driven by fibroblasts, with no volume growth. We will assume this scenario in this contribution, focusing exclusively on remodeling processes and on the reorientation of fibered biological structures.
It is well known that biological tissue remodels itself when driven by a given stimulus, e.g. mechanical loads such as an increase in blood pressure, or changes in the chemical environment that control the signaling processes and the overall evolution of the tissue. Biological remodeling can occur in any kind of biological tissue. In particular, the study of collagen as the most important substance to be remodeled, in all its types (preferentiallyPeer ReviewedPostprint (author's final draft
Depuração de efluente suinícola por Lemna minor e valorização energética da biomassa por co-digestão anaeróbia
Mestrado em Engenharia do Ambiente - Instituto Superior de AgronomiaOver the last decades, phytodepuration has been considered an efficient technology
to treat agricultural wastewaters.
Swine wastewater is rich in nutrients that can be used to grow biomass, producing a
treated wastewater that can be used for irrigation and a biomass that may be useful for
potential energy production by anaerobic digestion (AD). In this study a comparative
polishing treatment assays were developed, at a bench scale, through Lemna minor growth
in swine wastewater (4%) with similar concentration at a real scale last lagoon and Lemna
minor growth in synthetic medium. The highest observed growth rate obtained in swine
wastewater was 28.7 ± 2.3 g m-2 day-1 or 3.1 ± 0.3 gDM m-2 day-1. The highest nitrogen and
phosphorus uptake rates in swine wastewater system were 140 mg m-2 day-1 and 3.47 mg m-
2 day-1, respectively. The COD removal efficiency was 60.0 ± 1.0%.
Furthermore, an integrated approach was investigated assessing possible
valorisation of biomass by anaerobic co-digestion of swine wastewater with Lemna minor.
Results showed a clear improvement in gas production rate and methane specific production
in 40% and 44%, respectively, when compared to mono-substrate digestio
Anisotropic microsphere-based approach to damage in soft fibered tissue
The final publication is available at Springer via http://dx.doi.org/10.1007/s10237-011-0336-9An anisotropic damage model for soft fibered tissue is presented in this paper, using a multi-scale scheme and focusing on the directionally dependent behavior of these materials. For this purpose, a micro-structural or, more precisely, a microsphere-based approach is used to model the contribution of the fibers. The link between micro-structural contribution and macroscopic response is achieved by means of computational homogenization, involving numerical integration over the surface of the unit sphere. In order to deal with the distribution of the fibrils within the fiber, a von Mises probability function is incorporated, and the mechanical (phenomenological) behavior of the fibrils is defined by an exponential-type model. We will restrict ourselves to affine deformations of the network, neglecting any cross-link between fibrils and sliding between fibers and the surrounding ground matrix. Damage in the fiber bundles is introduced through a thermodynamic formulation, which is directly included in the hyperelastic model. When the fibers are stretched far from their natural state, they become damaged. The damage increases gradually due to the progressive failure of the fibrils that make up such a structure. This model has been implemented in a finite element code, and different boundary value problems are solved and discussed herein in order to test the model features. Finally, a clinical application with the material behavior obtained from actual experimental data is also presented.Peer ReviewedPostprint (author's final draft
Antisocial rewarding in structured populations
Cooperation in collective action dilemmas usually breaks down in the absence of additional incentive mechanisms. This tragedy can be escaped if cooperators have the possibility to invest in reward funds that are shared exclusively among cooperators (prosocial rewarding). Yet, the presence of defectors who do not contribute to the public good but do reward themselves (antisocial rewarding) deters cooperation in the absence of additional countermeasures. A recent simulation study suggests that spatial structure is sufficient to prevent antisocial rewarding from deterring cooperation. Here we reinvestigate this issue assuming mixed strategies and weak selection on a game-theoretic model of social interactions, which we also validate using individual-based simulations. We show that increasing reward funds facilitates the maintenance of prosocial rewarding but prevents its invasion, and that spatial structure can sometimes select against the evolution of prosocial rewarding. Our results suggest that, even in spatially structured populations, additional mechanisms are required to prevent antisocial rewarding from deterring cooperation in public goods dilemmas
A first approach to a public financial information system for social benefits
This paper proposes an aggregate accounting model for spending or accounting calculations in the form of a multi-year information system to supplement and expand information on a basic social assistance benefit. This model would be managed at national level, and would provide detailed information on changes over time in the items funded, with a view to assuring maximum accountability.
The system proposed would provide information on trends in the origin and application of funds for financing and managing possible basic social assistance benefit payments.peer-reviewe
- …