86 research outputs found

    Machine learning accelerated likelihood-free event reconstruction in dark matter direct detection

    Get PDF
    Reconstructing the position of an interaction for any dual-phase time projection chamber (TPC) with the best precision is key to directly detecting Dark Matter. Using the likelihood-free framework, a newalgorithm to reconstruct the 2-D (x; y) position and the size of the charge signal (e) of an interaction is presented. The algorithm uses the secondary scintillation light distribution (S2) obtained by simulating events using a waveform generator. To deal with the computational effort required by the likelihood-free approach, we employ the Bayesian Optimization for LikelihoodFree Inference (BOLFI) algorithm. Together with BOLFI, prior distributions for the parameters of interest (x; y; e) and highly informative discrepancy measures to performthe analyses are introduced. We evaluate the quality of the proposed algorithm by a comparison against the currently existing alternative methods using a large-scale simulation study. BOLFI provides a natural probabilistic uncertainty measure for the reconstruction and it improved the accuracy of the reconstruction over the next best algorithm by up to 15% when focusing on events at large radii (R > 30 cm, the outer 37% of the detector). In addition, BOLFI provides the smallest uncertainties among all the tested methods.Peer reviewe

    Search for Two-Neutrino Double Electron Capture of 124^{124}Xe with XENON100

    Get PDF
    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For 124^{124}Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of 124^{124}Xe using 7636 kg\cdotd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life T1/2>6.5×1020T_{1/2}>6.5\times10^{20} yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of T1/2>6.1×1022T_{1/2}>6.1\times10^{22} yr after an exposure of 2 t\cdotyr.Comment: 6 pages, 4 figure

    Removing krypton from xenon by cryogenic distillation to the ppq level

    Get PDF
    The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β\beta-emitter 85^{85}Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon nat\rm{^{nat}}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 1015^{-15} mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\cdot105^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of nat\rm{^{nat}}Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN

    Search for Two-Neutrino Double Electron Capture of <sup>124</sup>Xe with XENON100

    Get PDF
    Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For 124^{124}Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of 124^{124}Xe using 7636 kg\cdotd of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life T1/2>6.5×1020T_{1/2}>6.5\times10^{20} yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and find a sensitivity of T1/2>6.1×1022T_{1/2}>6.1\times10^{22} yr after an exposure of 2 t\cdotyr

    Physics reach of the XENON1T dark matter experiment

    Get PDF
    The XENON1T experiment is currently in the commissioning phase at theLaboratori Nazionali del Gran Sasso, Italy. In this article we study theexperiment's expected sensitivity to the spin-independent WIMP-nucleoninteraction cross section, based on Monte Carlo predictions of the electronicand nuclear recoil backgrounds. The total electronic recoil background in 11 tonne fiducial volume and (11,1212) keV electronic recoil equivalent energy region, before applying anyselection to discriminate between electronic and nuclear recoils, is (1.80±0.15)104(1.80 \pm0.15) \cdot 10^{-4} (kgdaykeV)1\rm{kg} \cdot day \cdot keV)^{-1}, mainly due to thedecay of 222Rn^{222}\rm{Rn} daughters inside the xenon target. The nuclear recoilbackground in the corresponding nuclear recoil equivalent energy region (44,5050) keV, is composed of (0.6±0.1)(0.6 \pm 0.1) (ty)1\rm{t} \cdot y)^{-1} fromradiogenic neutrons, (1.8±0.3)102(1.8 \pm 0.3) \cdot 10^{-2} (ty)1\rm{t} \cdot y)^{-1} fromcoherent scattering of neutrinos, and less than 0.010.01 (ty)1\rm{t} \cdot y)^{-1}from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratiomethod, after converting the deposited energy of electronic and nuclear recoilsinto the scintillation and ionization signals seen in the detector. We takeinto account the systematic uncertainties on the photon and electron emissionmodel, and on the estimation of the backgrounds, treated as nuisanceparameters. The main contribution comes from the relative scintillationefficiency Leff\mathcal{L}_\mathrm{eff}, which affects both the signal from WIMPsand the nuclear recoil backgrounds. After a 22 y measurement in 11 t fiducialvolume, the sensitivity reaches a minimum cross section of 1.610471.6 \cdot 10^{-47}cm2^2 at mχ_\chi=5050 GeV/c2c^2

    Online 222^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    Get PDF
    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ²²²Rn background originating from radon emanation. After inserting an auxiliary ²²²Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the ²²²Rn activity concentration inside the XENON100 detector

    Solar neutrino detection sensitivity in DARWIN via electron scattering

    Get PDF
    We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin 2θw, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200&nbsp;keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30&nbsp;tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5σ significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe

    Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering

    Get PDF
    We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin2θw, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5σ significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe

    DARWIN: towards the ultimate dark matter detector

    Get PDF
    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment forthe direct detection of dark matter using a multi-ton liquid xenon timeprojection chamber at its core. Its primary goal will be to explore theexperimentally accessible parameter space for Weakly Interacting MassiveParticles (WIMPs) in a wide mass-range, until neutrino interactions with thetarget become an irreducible background. The prompt scintillation light and thecharge signals induced by particle interactions in the xenon will be observedby VUV sensitive, ultra-low background photosensors. Besides its excellentsensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its largemass, low-energy threshold and ultra-low background level will also besensitive to other rare interactions. It will search for solar axions, galacticaxion-like particles and the neutrinoless double-beta decay of 136-Xe, as wellas measure the low-energy solar neutrino flux with <1% precision, observecoherent neutrino-nucleus interactions, and detect galactic supernovae. Wepresent the concept of the DARWIN detector and discuss its physics reach, themain sources of backgrounds and the ongoing detector design and R&D efforts
    corecore