16 research outputs found

    Etude de la dynamique de la couche de surface et des interactions surface/océan dans l'océan Austral sous la glace de mer

    Get PDF
    The Southern Ocean is a key region for the understanding of the global ocean circulation and for the climate as a whole. In this region, a large majority of the ocean’s water masses are ventilated in the surface layer, before being sent back to the deep ocean. The surface layer of the Southern Ocean is therefore a central element for understanding the global ocean circulation. Despite their fundamental role in the global ocean circulation and climate, the structure and characteristics of the mixed-layer are still poorly understood in the Antarctic Polar Region due to a significant lack of in-situ observations.However, the international MEOP program (2004) has led to the deployment of thousands of hydrological sensors on Elephant Seals and offers a unique spatial coverage of new data that cover the entire seasonal cycle. In this thesis, we exploit this dataset and other more conventional data, to bring a new perspective on this unknown region. Based on these observations, we describe the climatological properties and dynamics of the mixed-layer under Antarctic sea-ice. The vertical transfers between the mixed-layer and the deep ocean, associated with the meridional overturning circulation, and the hydrographic variations of the water masses in the mixed-layer, are described at seasonal and inter-annual time scales. The results highlight the critical role of freshwater fluxes, induced by sea-ice and precipitations, on the transformation of water masses under the sea-ice. Our findings suggest that changes in the intensity of these freshwater fluxes would directly affect the buoyancy budgets of the mixed-layer and impact the large-scale overturning circulation.L'ocĂ©an Austral est une rĂ©gion clĂ© pour la comprĂ©hension de la circulation ocĂ©anique globale et du climat. C'est dans cette rĂ©gion qu'une large majoritĂ© des eaux de la planĂšte est ventilĂ©e dans la couche de surface avant d'ĂȘtre rĂ©expĂ©diĂ©e dans l'ocĂ©an profond. Ainsi la couche de surface de l'ocĂ©an Austral est un Ă©lĂ©ment central pour la comprĂ©hension de la circulation ocĂ©anique planĂ©taire. MalgrĂ© leur rĂŽle fondamental dans la circulation ocĂ©anique globale et dans le climat, la structure et les caractĂ©ristiques de la couche de mĂ©lange sont encore mal comprises dans la rĂ©gion Antarctique en raison d'un manque important d'observations in-situ. Cependant, le programme international MEOP (2004) a conduit au dĂ©ploiement de milliers de capteurs hydrologiques sur des Ă©lĂ©phants de mer, et offre une couverture spatiale de donnĂ©es inĂ©dites couvrant l’ensemble du cycle saisonnier. Dans cette thĂšse, nous exploitons ce jeu de donnĂ©es ainsi que d'autres plus conventionnels, afin de dĂ©crire les propriĂ©tĂ©s climatologiques et la dynamique de la couche de mĂ©lange sous la glace de mer en Antarctique. Les transferts verticaux entre la couche de mĂ©lange et l’ocĂ©an plus profond, associĂ©s Ă  la circulation de retournement y sont dĂ©crits aux Ă©chelles de temps saisonniĂšres et inter-annuelles. Les rĂ©sultats soulignent et quantifient le rĂŽle primordial des flux d’eau douce, issus de la glace de mer et des prĂ©cipitations, sur la transformation de masses d’eau sous la banquise. Nos conclusions suggĂšrent que des changements dans l’intensitĂ© de ces flux d’eau douce pourraient directement affecter les budgets de densitĂ© de la couche de mĂ©lange et impacter la circulation de retournement globale

    Sensitivity of simulated water mass transformation on the Antarctic shelf to tides, topography and model resolution

    Get PDF
    Water mass transformation (WMT) around the Antarctic margin controls Antarctica Bottom Water formation and the abyssal limb of the global meridional overturning circulation, besides mediating ocean-ice shelf exchange, ice sheet stability and its contribution to sea level rise. However, the mechanisms controlling the rate of WMT in the Antarctic shelf are poorly understood due to the lack of observations and the inability of climate models to simulate those mechanisms, in particular beneath the floating ice shelves. We used a circum-Antarctic ocean-ice shelf model to assess the contribution of surface fluxes, mixing, and ocean-ice shelf interaction to the WMT on the continental shelf. The salt budget dominates the WMT rates, with only a secondary contribution from the heat budget. Basal melt of ice shelves drives buoyancy gain at lighter density classes (27.2<σΞ< 27.6 kg m-3), while salt input associated with sea-ice growth in coastal polynyas drives buoyancy loss at heavier densities (σΞ> 27.6). We found a large sensitivity of the WMT rates to model horizontal resolution, tides and topography within the Filchner-Ronne, East and West Antarctica ice shelf cavities. In the Filchner-Ronne Ice Shelf, an anticyclonic circulation in front of the Ronne Depression regulates the rates of basal melting/refreezing and WMT and is substantially affected by tides and model resolution. Model resolution is also found to affect the Antarctic Slope Current in both East and West Antarctica, impacting the on-shelf heat delivery, basal melt and WMT. Moreover, the representation of the ice shelf draft associated with model resolution impacts the freezing temperature and thus basal melt and WMT rates in the East Antarctica. These results highlight the importance of resolving small-scale features of the flow and topography, and to include the effects of tidal forcing, to adequately represent water mass transformations on the shelf that directly influence the abyssal global overturning circulation

    Study of the mixed-layer dynamics and the interactions surface/ocean in the Southern Ocean under the sea-ice

    No full text
    L'ocĂ©an Austral est une rĂ©gion clĂ© pour la comprĂ©hension de la circulation ocĂ©anique globale et du climat. C'est dans cette rĂ©gion qu'une large majoritĂ© des eaux de la planĂšte est ventilĂ©e dans la couche de surface avant d'ĂȘtre rĂ©expĂ©diĂ©e dans l'ocĂ©an profond. Ainsi la couche de surface de l'ocĂ©an Austral est un Ă©lĂ©ment central pour la comprĂ©hension de la circulation ocĂ©anique planĂ©taire. MalgrĂ© leur rĂŽle fondamental dans la circulation ocĂ©anique globale et dans le climat, la structure et les caractĂ©ristiques de la couche de mĂ©lange sont encore mal comprises dans la rĂ©gion Antarctique en raison d'un manque important d'observations in-situ. Cependant, le programme international MEOP (2004) a conduit au dĂ©ploiement de milliers de capteurs hydrologiques sur des Ă©lĂ©phants de mer, et offre une couverture spatiale de donnĂ©es inĂ©dites couvrant l’ensemble du cycle saisonnier. Dans cette thĂšse, nous exploitons ce jeu de donnĂ©es ainsi que d'autres plus conventionnels, afin de dĂ©crire les propriĂ©tĂ©s climatologiques et la dynamique de la couche de mĂ©lange sous la glace de mer en Antarctique. Les transferts verticaux entre la couche de mĂ©lange et l’ocĂ©an plus profond, associĂ©s Ă  la circulation de retournement y sont dĂ©crits aux Ă©chelles de temps saisonniĂšres et inter-annuelles. Les rĂ©sultats soulignent et quantifient le rĂŽle primordial des flux d’eau douce, issus de la glace de mer et des prĂ©cipitations, sur la transformation de masses d’eau sous la banquise. Nos conclusions suggĂšrent que des changements dans l’intensitĂ© de ces flux d’eau douce pourraient directement affecter les budgets de densitĂ© de la couche de mĂ©lange et impacter la circulation de retournement globale.The Southern Ocean is a key region for the understanding of the global ocean circulation and for the climate as a whole. In this region, a large majority of the ocean’s water masses are ventilated in the surface layer, before being sent back to the deep ocean. The surface layer of the Southern Ocean is therefore a central element for understanding the global ocean circulation. Despite their fundamental role in the global ocean circulation and climate, the structure and characteristics of the mixed-layer are still poorly understood in the Antarctic Polar Region due to a significant lack of in-situ observations.However, the international MEOP program (2004) has led to the deployment of thousands of hydrological sensors on Elephant Seals and offers a unique spatial coverage of new data that cover the entire seasonal cycle. In this thesis, we exploit this dataset and other more conventional data, to bring a new perspective on this unknown region. Based on these observations, we describe the climatological properties and dynamics of the mixed-layer under Antarctic sea-ice. The vertical transfers between the mixed-layer and the deep ocean, associated with the meridional overturning circulation, and the hydrographic variations of the water masses in the mixed-layer, are described at seasonal and inter-annual time scales. The results highlight the critical role of freshwater fluxes, induced by sea-ice and precipitations, on the transformation of water masses under the sea-ice. Our findings suggest that changes in the intensity of these freshwater fluxes would directly affect the buoyancy budgets of the mixed-layer and impact the large-scale overturning circulation

    Étude de la dynamique de la couche de surface et des interactions surface/ocĂ©an dans l'ocĂ©an Austral sous la glace de mer

    Get PDF
    The Southern Ocean is a key region for the understanding of the global ocean circulation and for the climate as a whole. In this region, a large majority of the ocean’s water masses are ventilated in the surface layer, before being sent back to the deep ocean. The surface layer of the Southern Ocean is therefore a central element for understanding the global ocean circulation. Despite their fundamental role in the global ocean circulation and climate, the structure and characteristics of the mixed-layer are still poorly understood in the Antarctic Polar Region due to a significant lack of in-situ observations.However, the international MEOP program (2004) has led to the deployment of thousands of hydrological sensors on Elephant Seals and offers a unique spatial coverage of new data that cover the entire seasonal cycle. In this thesis, we exploit this dataset and other more conventional data, to bring a new perspective on this unknown region. Based on these observations, we describe the climatological properties and dynamics of the mixed-layer under Antarctic sea-ice. The vertical transfers between the mixed-layer and the deep ocean, associated with the meridional overturning circulation, and the hydrographic variations of the water masses in the mixed-layer, are described at seasonal and inter-annual time scales. The results highlight the critical role of freshwater fluxes, induced by sea-ice and precipitations, on the transformation of water masses under the sea-ice. Our findings suggest that changes in the intensity of these freshwater fluxes would directly affect the buoyancy budgets of the mixed-layer and impact the large-scale overturning circulation.L'ocĂ©an Austral est une rĂ©gion clĂ© pour la comprĂ©hension de la circulation ocĂ©anique globale et du climat. C'est dans cette rĂ©gion qu'une large majoritĂ© des eaux de la planĂšte est ventilĂ©e dans la couche de surface avant d'ĂȘtre rĂ©expĂ©diĂ©e dans l'ocĂ©an profond. Ainsi la couche de surface de l'ocĂ©an Austral est un Ă©lĂ©ment central pour la comprĂ©hension de la circulation ocĂ©anique planĂ©taire. MalgrĂ© leur rĂŽle fondamental dans la circulation ocĂ©anique globale et dans le climat, la structure et les caractĂ©ristiques de la couche de mĂ©lange sont encore mal comprises dans la rĂ©gion Antarctique en raison d'un manque important d'observations in-situ. Cependant, le programme international MEOP (2004) a conduit au dĂ©ploiement de milliers de capteurs hydrologiques sur des Ă©lĂ©phants de mer, et offre une couverture spatiale de donnĂ©es inĂ©dites couvrant l’ensemble du cycle saisonnier. Dans cette thĂšse, nous exploitons ce jeu de donnĂ©es ainsi que d'autres plus conventionnels, afin de dĂ©crire les propriĂ©tĂ©s climatologiques et la dynamique de la couche de mĂ©lange sous la glace de mer en Antarctique. Les transferts verticaux entre la couche de mĂ©lange et l’ocĂ©an plus profond, associĂ©s Ă  la circulation de retournement y sont dĂ©crits aux Ă©chelles de temps saisonniĂšres et inter-annuelles. Les rĂ©sultats soulignent et quantifient le rĂŽle primordial des flux d’eau douce, issus de la glace de mer et des prĂ©cipitations, sur la transformation de masses d’eau sous la banquise. Nos conclusions suggĂšrent que des changements dans l’intensitĂ© de ces flux d’eau douce pourraient directement affecter les budgets de densitĂ© de la couche de mĂ©lange et impacter la circulation de retournement globale

    Holocene variability in the North sub-Polar Gyre

    No full text
    International audienceThe distribution of heat and moisture between low and high latitudes is for a large part controlled by the NorthAtlantic Ocean circulation and the dynamics of the sub-tropical (STG) and sub-polar gyre (SPG). Here, we present a new high-resolution (∌25 yrs) sea surface temperature (SST) reconstruction over the Holocene (last 10,000 years) in the subpolar North Atlantic. This time series was obtained by alkenone thermometry from the marine sediment core MD95-2015 located South of Iceland, on the eastern flank of the Reykjanes Ridge. Our data reveal three distinct time intervals corresponding to different sub-polar gyre circulation modes. A first period, in the Early Holocene, when the Laurentide ice sheet melting supplied fresh water in the Labrador Sea which contributed to stabilize vertical mixing; a second time period, ranging from ∌ 6500 yr BP to ∌3000 yr BP, during which the SPG was more active and vertical mixing more intense; a third one,encompassing the last millennia of the Late Holocene, when the gyre appeared to have narrowed and weakened. We compare our data with previous paleo-observations and discuss possible causes for these dynamical patterns of the SPG

    The southern ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes

    Get PDF
    The oceans are traversed by a large-scale overturning circulation, essential for the climate system as it sets the rate at which the deep ocean interacts with the atmosphere. The main region where deep waters reach the surface is in the Southern Ocean, where they are transformed by interactions with the atmosphere and sea-ice. Here, we present an observation-based estimate of the rate of overturning sustained by surface buoyancy fluxes in the Southern Ocean sea-ice sector. In this region, the seasonal growth and melt of sea-ice dominate water-mass transformations. Both sea-ice freezing and melting act as a pump, removing freshwater from high latitudes and transporting it to lower latitudes, driving a large-scale circulation that upwells 27 ± 7 Sv of deep water to the surface. The upwelled water is then transformed into 22 ± 4 Sv of lighter water and 5 ± 5 Sv into denser layers that feed an upper and lower overturning cell, respectively

    Influence of the North Atlantic subpolar gyre circulation on the 4.2 ka BP event

    Get PDF
    International audienceThe 4.2 ka BP event, spanning from ca 4200 to 3900 cal BP, has been documented in numerous archaeological data and continental archives across the Northern Hemisphere as an abrupt shift to dry and cold climate. However, data on synchronous ocean circulation changes are notably lacking, thus preventing us from getting a full insight into the physical mechanisms responsible for this climate deterioration. Here, we present two high-resolution (5-20 years) sea surface temperature (SST) records from the subpolar gyre and off north Iceland in the vicinity of the polar front obtained from alkenone paleo-thermometry and compare them with proxy data from the western Mediterranean Sea to gain information on regional temperature and precipitation patterns. Our results are evidence of a temperature dipole pattern which, combined with other paleo-oceanographic records of the North Atlantic, suggests a weakening of the subpolar gyre possibly associated with atmospheric blocked regimes
    corecore